File size: 8,429 Bytes
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
53fe34a
 
 
 
 
 
 
 
1a696b5
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
 
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
53fe34a
1a696b5
 
53fe34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a696b5
53fe34a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from types import SimpleNamespace

import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset


ModalityType = SimpleNamespace(
    AA="aa",
    DNA="dna",
    PDB="pdb",
    GO="go",
    MSA="msa",
    TEXT="text",
)


class Normalize(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim

    def forward(self, x):
        return torch.nn.functional.normalize(x, dim=self.dim, p=2)


class EmbeddingDataset(Dataset):
    """
    The main class for turning any modality to a torch Dataset that can be passed to
    a torch dataloader. Any modality that doesn't fit into the __getitem__
    method can subclass this and modify the __getitem__ method.
    """
    def __init__(self, sequence_file_path, embeddings_file_path, modality):
        self.sequence = pd.read_csv(sequence_file_path)
        self.embedding = torch.load(embeddings_file_path)
        self.modality = modality

    def __len__(self):
        return len(self.sequence)

    def __getitem__(self, idx):
        sequence = self.sequence.iloc[idx, 0]
        embedding = self.embedding[idx]
        return {"aa": sequence, self.modality: embedding}


class DualEmbeddingDataset(Dataset):
    """
    The main class for turning any modality to a torch Dataset that can be passed to
    a torch dataloader. Any modality that doesn't fit into the __getitem__
    method can subclass this and modify the __getitem__ method.
    """
    def __init__(self, sequence_embeddings_file_path, embeddings_file_path, modality):
        self.sequence_embedding = torch.load(sequence_embeddings_file_path)
        self.embedding = torch.load(embeddings_file_path)
        self.modality = modality

    def __len__(self):
        return len(self.sequence_embedding)

    def __getitem__(self, idx):
        sequence_embedding = self.sequence_embedding[idx]
        embedding = self.embedding[idx]
        return {"aa": sequence_embedding, self.modality: embedding}


class ProteinBindModel(nn.Module):

    def __init__(
            self,
            aa_embed_dim,
            dna_embed_dim,
            pdb_embed_dim,
            go_embed_dim,
            msa_embed_dim,
            text_embed_dim,
            in_embed_dim,
            out_embed_dim
    ):
        super().__init__()
        self.modality_trunks = self._create_modality_trunk(
            aa_embed_dim,
            dna_embed_dim,
            pdb_embed_dim,
            go_embed_dim,
            msa_embed_dim,
            text_embed_dim,
            out_embed_dim
        )
        self.modality_heads = self._create_modality_head(
            in_embed_dim,
            out_embed_dim,
        )
        self.modality_postprocessors = self._create_modality_postprocessors(
            out_embed_dim
        )

    def _create_modality_trunk(
            self,
            aa_embed_dim,
            dna_embed_dim,
            pdb_embed_dim,
            go_embed_dim,
            msa_embed_dim,
            text_embed_dim,
            in_embed_dim
    ):
        """
        The current layers are just a proof of concept
        and are subject to the opinion of others.
        :param aa_embed_dim:
        :param dna_embed_dim:
        :param pdb_embed_dim:
        :param go_embed_dim:
        :param msa_embed_dim:
        :param text_embed_dim:
        :param in_embed_dim:
        :return:
        """
        modality_trunks = {}

        modality_trunks[ModalityType.AA] = nn.Sequential(
            nn.Linear(aa_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        modality_trunks[ModalityType.DNA] = nn.Sequential(
            nn.Linear(dna_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        modality_trunks[ModalityType.PDB] = nn.Sequential(
            nn.Linear(pdb_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        modality_trunks[ModalityType.GO] = nn.Sequential(
            nn.Linear(go_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        modality_trunks[ModalityType.MSA] = nn.Sequential(
            nn.Linear(msa_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        modality_trunks[ModalityType.TEXT] = nn.Sequential(
            nn.Linear(text_embed_dim, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, in_embed_dim),
        )

        return nn.ModuleDict(modality_trunks)

    def _create_modality_head(
            self,
            in_embed_dim,
            out_embed_dim
    ):
        modality_heads = {}

        modality_heads[ModalityType.AA] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )

        modality_heads[ModalityType.DNA] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )

        modality_heads[ModalityType.PDB] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )

        modality_heads[ModalityType.GO] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )

        modality_heads[ModalityType.MSA] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )

        modality_heads[ModalityType.TEXT] = nn.Sequential(
            nn.LayerNorm(normalized_shape=in_embed_dim, eps=1e-6),
            nn.Dropout(p=0.5),
            nn.Linear(in_embed_dim, out_embed_dim, bias=False),
        )
        return nn.ModuleDict(modality_heads)

    def _create_modality_postprocessors(self, out_embed_dim):
        modality_postprocessors = {}
        modality_postprocessors[ModalityType.AA] = Normalize(dim=-1)
        modality_postprocessors[ModalityType.DNA] = Normalize(dim=-1)
        modality_postprocessors[ModalityType.PDB] = Normalize(dim=-1)
        modality_postprocessors[ModalityType.TEXT] = Normalize(dim=-1)
        modality_postprocessors[ModalityType.GO] = Normalize(dim=-1)
        modality_postprocessors[ModalityType.MSA] = Normalize(dim=-1)

        return nn.ModuleDict(modality_postprocessors)

    def forward(self, inputs):
        """
        input = {k_1: [v],k_n: [v]}
        for key in input
            get trunk for key
            forward pass of value in trunk
            get projection head of key
            forward pass of value in projection head
            append output in output dict
        return { k_1, [o], k_n: [o]}
        """

        outputs = {}

        for modality_key, modality_value in inputs.items():

            modality_value = self.modality_trunks[modality_key](
                modality_value
            )

            modality_value = self.modality_heads[modality_key](
                modality_value
            )

            modality_value = self.modality_postprocessors[modality_key](
                modality_value
            )
            outputs[modality_key] = modality_value

        return outputs


def create_proteinbind(pretrained=False):
    """
    The embedding dimensions here are dummy
    :param pretrained:
    :return:
    """
    model = ProteinBindModel(
        aa_embed_dim=480,
        dna_embed_dim=1280,
        pdb_embed_dim=128,
        go_embed_dim=600,
        msa_embed_dim=768,
        text_embed_dim=768,
        in_embed_dim=1024,
        out_embed_dim=1024
    )

    if pretrained:
        # get path from config
        PATH = 'best_model.pth'

        model.load_state_dict(torch.load(PATH))

    return model