Spaces:
Running
Running
File size: 1,553 Bytes
6c226f9 b7fa1b5 85b6c52 6c226f9 57f73ef 6c226f9 57f73ef 3c0cd8e bab1585 57f73ef 6c226f9 13e0565 1faae08 13e0565 6c226f9 3c0cd8e 85b6c52 57f73ef 85b6c52 57f73ef 85b6c52 57f73ef 6c226f9 5208902 57f73ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
from whisper import generate
from AinaTheme import theme
MODEL_NAME = "projecte-aina/whisper-large-v3-ca-es-synth-cs"
def transcribe(inputs):
if inputs is None:
raise gr.Error("Cap fitxer d'脿udio introduit! Si us plau pengeu un fitxer "\
"o enregistreu un 脿udio abans d'enviar la vostra sol路licitud")
return generate(audio_path=inputs)
description_string = "Transcripci贸 autom脿tica de micr貌fon o de fitxers d'脿udio.\n Aquest demostrador s'ha desenvolupat per"\
" comprovar els models de reconeixement de parla per a m贸bils. Per ara utilitza el checkpoint "\
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 馃 Transformers per a la transcripci贸."
def clear():
return (
None
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown(description_string)
with gr.Row():
with gr.Column(scale=1):
#input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
input = gr.Audio(sources=["upload"], type="filepath", label="Audio")
with gr.Column(scale=1):
output = gr.Textbox(label="Output", lines=8)
with gr.Row(variant="panel"):
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
submit_btn.click(fn=transcribe, inputs=[input], outputs=[output])
clear_btn.click(fn=clear,inputs=[], outputs=[input], queue=False,)
if __name__ == "__main__":
demo.launch() |