Spaces:
Running
on
Zero
Running
on
Zero
wenmengzhou
commited on
split video_generation to two function
Browse files
webgui.py
CHANGED
@@ -160,9 +160,8 @@ def select_face(det_bboxes, probs):
|
|
160 |
return sorted_bboxes[0]
|
161 |
|
162 |
lmk_extractor = LMKExtractor()
|
163 |
-
|
164 |
-
def
|
165 |
-
#### face musk prepare
|
166 |
face_img = cv2.imread(uploaded_img)
|
167 |
if face_img is None:
|
168 |
raise gr.Error("input image should be uploaded or selected.")
|
@@ -178,8 +177,7 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_
|
|
178 |
r_pad = int((re - rb) * facemask_dilation_ratio)
|
179 |
c_pad = int((ce - cb) * facemask_dilation_ratio)
|
180 |
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
|
181 |
-
|
182 |
-
#### face crop
|
183 |
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
|
184 |
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
|
185 |
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
|
@@ -187,39 +185,14 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_
|
|
187 |
face_mask = crop_and_pad(face_mask, crop_rect)
|
188 |
face_img = cv2.resize(face_img, (width, height))
|
189 |
face_mask = cv2.resize(face_mask, (width, height))
|
|
|
190 |
print('face detect done.')
|
191 |
-
|
192 |
-
'''
|
193 |
-
driver_video = "./assets/driven_videos/c.mp4"
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
|
199 |
-
|
200 |
-
pose_list = []
|
201 |
-
sequence_driver_det = []
|
202 |
-
try:
|
203 |
-
for frame in input_frames_cv2:
|
204 |
-
result = lmk_extractor(frame)
|
205 |
-
assert result is not None, "{}, bad video, face not detected".format(driver_video)
|
206 |
-
sequence_driver_det.append(result)
|
207 |
-
except:
|
208 |
-
print("face detection failed")
|
209 |
-
exit()
|
210 |
-
|
211 |
-
sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
|
212 |
-
for p in sequence_det_ms:
|
213 |
-
tgt_musk = visualizer.draw_landmarks((width, height), p)
|
214 |
-
tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
|
215 |
-
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
|
216 |
-
'''
|
217 |
-
# face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
|
218 |
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
219 |
-
|
220 |
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
|
221 |
-
|
222 |
-
#del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2
|
223 |
|
224 |
video = pipe(
|
225 |
ref_image_pil,
|
@@ -230,7 +203,6 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_
|
|
230 |
length,
|
231 |
steps,
|
232 |
cfg,
|
233 |
-
#generator=generator,
|
234 |
audio_sample_rate=sample_rate,
|
235 |
context_frames=context_frames,
|
236 |
fps=fps,
|
@@ -250,6 +222,103 @@ def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_
|
|
250 |
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
|
251 |
|
252 |
return final_output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
with gr.Blocks() as demo:
|
255 |
gr.Markdown('# EchoMimic')
|
|
|
160 |
return sorted_bboxes[0]
|
161 |
|
162 |
lmk_extractor = LMKExtractor()
|
163 |
+
|
164 |
+
def face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height):
|
|
|
165 |
face_img = cv2.imread(uploaded_img)
|
166 |
if face_img is None:
|
167 |
raise gr.Error("input image should be uploaded or selected.")
|
|
|
177 |
r_pad = int((re - rb) * facemask_dilation_ratio)
|
178 |
c_pad = int((ce - cb) * facemask_dilation_ratio)
|
179 |
face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
|
180 |
+
|
|
|
181 |
r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
|
182 |
c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
|
183 |
crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
|
|
|
185 |
face_mask = crop_and_pad(face_mask, crop_rect)
|
186 |
face_img = cv2.resize(face_img, (width, height))
|
187 |
face_mask = cv2.resize(face_mask, (width, height))
|
188 |
+
|
189 |
print('face detect done.')
|
190 |
+
return face_img, face_mask
|
|
|
|
|
191 |
|
192 |
+
@spaces.GPU
|
193 |
+
def video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
|
|
195 |
ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
|
|
|
|
|
196 |
|
197 |
video = pipe(
|
198 |
ref_image_pil,
|
|
|
203 |
length,
|
204 |
steps,
|
205 |
cfg,
|
|
|
206 |
audio_sample_rate=sample_rate,
|
207 |
context_frames=context_frames,
|
208 |
fps=fps,
|
|
|
222 |
video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
|
223 |
|
224 |
return final_output_path
|
225 |
+
|
226 |
+
def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
|
227 |
+
face_img, face_mask = face_detection(uploaded_img, facemask_dilation_ratio, facecrop_dilation_ratio, width, height)
|
228 |
+
final_output_path = video_pipe(face_img, face_mask, uploaded_audio, width, height, length, context_frames, context_overlap, cfg, steps, sample_rate, fps, device)
|
229 |
+
return final_output_path
|
230 |
+
|
231 |
+
|
232 |
+
# @spaces.GPU
|
233 |
+
# def process_video(uploaded_img, uploaded_audio, width, height, length, facemask_dilation_ratio, facecrop_dilation_ratio, context_frames, context_overlap, cfg, steps, sample_rate, fps, device):
|
234 |
+
# #### face musk prepare
|
235 |
+
# face_img = cv2.imread(uploaded_img)
|
236 |
+
# if face_img is None:
|
237 |
+
# raise gr.Error("input image should be uploaded or selected.")
|
238 |
+
# face_mask = np.zeros((face_img.shape[0], face_img.shape[1])).astype('uint8')
|
239 |
+
# det_bboxes, probs = face_detector.detect(face_img)
|
240 |
+
# select_bbox = select_face(det_bboxes, probs)
|
241 |
+
# if select_bbox is None:
|
242 |
+
# face_mask[:, :] = 255
|
243 |
+
# else:
|
244 |
+
# xyxy = select_bbox[:4]
|
245 |
+
# xyxy = np.round(xyxy).astype('int')
|
246 |
+
# rb, re, cb, ce = xyxy[1], xyxy[3], xyxy[0], xyxy[2]
|
247 |
+
# r_pad = int((re - rb) * facemask_dilation_ratio)
|
248 |
+
# c_pad = int((ce - cb) * facemask_dilation_ratio)
|
249 |
+
# face_mask[rb - r_pad : re + r_pad, cb - c_pad : ce + c_pad] = 255
|
250 |
+
|
251 |
+
# #### face crop
|
252 |
+
# r_pad_crop = int((re - rb) * facecrop_dilation_ratio)
|
253 |
+
# c_pad_crop = int((ce - cb) * facecrop_dilation_ratio)
|
254 |
+
# crop_rect = [max(0, cb - c_pad_crop), max(0, rb - r_pad_crop), min(ce + c_pad_crop, face_img.shape[1]), min(re + r_pad_crop, face_img.shape[0])]
|
255 |
+
# face_img = crop_and_pad(face_img, crop_rect)
|
256 |
+
# face_mask = crop_and_pad(face_mask, crop_rect)
|
257 |
+
# face_img = cv2.resize(face_img, (width, height))
|
258 |
+
# face_mask = cv2.resize(face_mask, (width, height))
|
259 |
+
# print('face detect done.')
|
260 |
+
# # ==================== face_locator =====================
|
261 |
+
# '''
|
262 |
+
# driver_video = "./assets/driven_videos/c.mp4"
|
263 |
+
|
264 |
+
# input_frames_cv2 = [cv2.resize(center_crop_cv2(pil_to_cv2(i)), (512, 512)) for i in pils_from_video(driver_video)]
|
265 |
+
# ref_det = lmk_extractor(face_img)
|
266 |
+
|
267 |
+
# visualizer = FaceMeshVisualizer(draw_iris=False, draw_mouse=False)
|
268 |
+
|
269 |
+
# pose_list = []
|
270 |
+
# sequence_driver_det = []
|
271 |
+
# try:
|
272 |
+
# for frame in input_frames_cv2:
|
273 |
+
# result = lmk_extractor(frame)
|
274 |
+
# assert result is not None, "{}, bad video, face not detected".format(driver_video)
|
275 |
+
# sequence_driver_det.append(result)
|
276 |
+
# except:
|
277 |
+
# print("face detection failed")
|
278 |
+
# exit()
|
279 |
+
|
280 |
+
# sequence_det_ms = motion_sync(sequence_driver_det, ref_det)
|
281 |
+
# for p in sequence_det_ms:
|
282 |
+
# tgt_musk = visualizer.draw_landmarks((width, height), p)
|
283 |
+
# tgt_musk_pil = Image.fromarray(np.array(tgt_musk).astype(np.uint8)).convert('RGB')
|
284 |
+
# pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=weight_dtype, device="cuda").permute(2,0,1) / 255.0)
|
285 |
+
# '''
|
286 |
+
# # face_mask_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
|
287 |
+
# face_mask_tensor = torch.Tensor(face_mask).to(dtype=weight_dtype, device="cuda").unsqueeze(0).unsqueeze(0).unsqueeze(0) / 255.0
|
288 |
+
|
289 |
+
# ref_image_pil = Image.fromarray(face_img[:, :, [2, 1, 0]])
|
290 |
+
|
291 |
+
# #del pose_list, sequence_det_ms, sequence_driver_det, input_frames_cv2
|
292 |
+
|
293 |
+
# video = pipe(
|
294 |
+
# ref_image_pil,
|
295 |
+
# uploaded_audio,
|
296 |
+
# face_mask_tensor,
|
297 |
+
# width,
|
298 |
+
# height,
|
299 |
+
# length,
|
300 |
+
# steps,
|
301 |
+
# cfg,
|
302 |
+
# #generator=generator,
|
303 |
+
# audio_sample_rate=sample_rate,
|
304 |
+
# context_frames=context_frames,
|
305 |
+
# fps=fps,
|
306 |
+
# context_overlap=context_overlap
|
307 |
+
# ).videos
|
308 |
+
# print('video pipe done.')
|
309 |
+
|
310 |
+
# save_dir = Path("output/tmp")
|
311 |
+
# save_dir.mkdir(exist_ok=True, parents=True)
|
312 |
+
# output_video_path = save_dir / "output_video.mp4"
|
313 |
+
# save_videos_grid(video, str(output_video_path), n_rows=1, fps=fps)
|
314 |
+
|
315 |
+
# video_clip = VideoFileClip(str(output_video_path))
|
316 |
+
# audio_clip = AudioFileClip(uploaded_audio)
|
317 |
+
# final_output_path = save_dir / "output_video_with_audio.mp4"
|
318 |
+
# video_clip = video_clip.set_audio(audio_clip)
|
319 |
+
# video_clip.write_videofile(str(final_output_path), codec="libx264", audio_codec="aac")
|
320 |
+
|
321 |
+
# return final_output_path
|
322 |
|
323 |
with gr.Blocks() as demo:
|
324 |
gr.Markdown('# EchoMimic')
|