File size: 1,665 Bytes
5b74a4b 5c4fa2e 5b74a4b 425531b 5b74a4b 425531b 5b74a4b e3a6dbd df27a26 5b74a4b df27a26 17cfe18 a5ec736 b2c7d3a 5b74a4b eaff29b 5b74a4b b2c7d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
from transformers import pipeline
import numpy as np
# Load the pipeline for speech recognition and translation
pipe = pipeline(
"automatic-speech-recognition",
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
)
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
# Define the function to translate speech
def translate_speech(audio):
# Separate the sample rate and the audio data
sample_rate, audio_data = audio
# Use the speech recognition pipeline to transcribe the audio
transcription = pipe(audio_data)["transcription"]
# Use the translation pipeline to translate the transcription
translated_text = translator(transcription, return_tensors="pt", padding=True)
# Use the text-to-speech pipeline to synthesize the translated text
synthesised_speech = tts(translated_text, return_tensors='pt')
# Define the max_range variable
max_range = 32767 # You can adjust this value based on your requirements
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
return 16000, synthesised_speech
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()
|