File size: 2,026 Bytes
df27a26 382ed84 df27a26 d347764 b2c7d3a c714a80 b2c7d3a d347764 d9741d3 5dd0786 7ae6fbc b2c7d3a 382ed84 b2c7d3a df27a26 d347764 df27a26 b2c7d3a d347764 5dd0786 df27a26 17cfe18 b2c7d3a df27a26 b2c7d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio
import torch
import numpy as np
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform
# Load your pretrained models
asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text")
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text", from_tf=True)
tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts")
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts")
# Modify the translate function to accept the sampling_rate argument
def translate(audio_signal, sampling_rate):
inputs = asr_processor(audio_signal, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
logits = asr_model(inputs.input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = asr_processor.decode(predicted_ids[0])
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True))
translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated]
return translated_text
def synthesise(translated_text):
inputs = tts_tokenizer(translated_text, return_tensors='pt')
audio = tts_model.generate(inputs['input_ids'])
return audio
def translate_speech(audio, sampling_rate):
translated_text = translate(audio, sampling_rate)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16)
return 16000, synthesised_speech
# Define the Gradio interface
iface = gradio.Interface(fn=translate_speech, inputs=gradio.inputs.Audio(source="microphone", type="numpy"), outputs="audio")
iface.launch()
|