ha-en / app.py
Baghdad99's picture
Update app.py
a63c502
raw
history blame
2.31 kB
import gradio as gr
from transformers import pipeline, VitsModel, AutoTokenizer
import numpy as np
import torch
import scipy
# Load the pipeline for speech recognition and translation
pipe = pipeline(
"automatic-speech-recognition",
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
)
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
# Define the function to translate speech
def translate_speech(audio):
# Separate the sample rate and the audio data
sample_rate, audio_data = audio
# Use the speech recognition pipeline to transcribe the audio
output = pipe(audio_data)
print(f"Output: {output}") # Print the output to see what it contains
# Check if the output contains 'text'
if 'text' in output[0]:
transcription = output[0]["text"]
else:
print("The output does not contain 'text'")
return
# Use the translation pipeline to translate the transcription
translated_text = translator(transcription)
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
# Use the VITS model to synthesize the translated text into speech
inputs = tokenizer(translated_text[0]['translation_text'], return_tensors="pt")
with torch.no_grad():
output = model.generate(**inputs)
# Save the synthesized speech to a WAV file
scipy.io.wavfile.write("synthesized_speech.wav", rate=model.config.sampling_rate, data=output.float().numpy())
print("Translated text:", translated_text[0]['translation_text'])
print("Synthesized speech data shape:", output.shape)
print("Sampling rate:", model.config.sampling_rate)
return 16000, output.numpy()
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()