Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import scipy
|
6 |
-
|
7 |
-
# Load the pipeline for speech recognition and translation
|
8 |
-
pipe = pipeline(
|
9 |
-
"automatic-speech-recognition",
|
10 |
-
model="Baghdad99/saad-speech-recognition-hausa-audio-to-text",
|
11 |
-
tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
12 |
-
)
|
13 |
-
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
14 |
-
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
15 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
16 |
|
17 |
-
# Define the
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
else:
|
30 |
-
print("The output
|
31 |
return
|
32 |
|
33 |
# Use the translation pipeline to translate the transcription
|
34 |
-
translated_text =
|
35 |
-
print(f"Translated text: {translated_text}") # Print the translated text to see what it contains
|
36 |
-
|
37 |
-
# Use the VITS model to synthesize the translated text into speech
|
38 |
-
inputs = tokenizer(translated_text[0]['translation_text'], return_tensors="pt")
|
39 |
-
with torch.no_grad():
|
40 |
-
output = model.generate(**inputs)
|
41 |
-
|
42 |
-
# Save the synthesized speech to a WAV file
|
43 |
-
scipy.io.wavfile.write("synthesized_speech.wav", rate=model.config.sampling_rate, data=output.float().numpy())
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
return
|
50 |
|
51 |
# Define the Gradio interface
|
52 |
iface = gr.Interface(
|
53 |
fn=translate_speech,
|
54 |
-
inputs=gr.inputs.Audio(source="microphone", type="
|
55 |
-
outputs=gr.outputs.Audio(type="
|
56 |
title="Hausa to English Translation",
|
57 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
58 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from IPython.display import Audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Define the Hugging Face Inference API URLs and headers
|
6 |
+
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
|
7 |
+
TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
|
8 |
+
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
|
9 |
+
headers = {"Authorization": "Bearer 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"}
|
10 |
|
11 |
+
# Define the function to query the Hugging Face Inference API
|
12 |
+
def query(api_url, payload):
|
13 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
14 |
+
return response.json()
|
15 |
|
16 |
+
# Define the function to translate speech
|
17 |
+
def translate_speech(audio):
|
18 |
+
# Use the ASR pipeline to transcribe the audio
|
19 |
+
with open(audio.name, "rb") as f:
|
20 |
+
data = f.read()
|
21 |
+
response = requests.post(ASR_API_URL, headers=headers, data=data)
|
22 |
+
output = response.json()
|
23 |
+
|
24 |
+
# Check if the output contains 'text'
|
25 |
+
if 'text' in output:
|
26 |
+
transcription = output["text"]
|
27 |
else:
|
28 |
+
print("The output does not contain 'text'")
|
29 |
return
|
30 |
|
31 |
# Use the translation pipeline to translate the transcription
|
32 |
+
translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Use the TTS pipeline to synthesize the translated text
|
35 |
+
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
|
36 |
+
audio_bytes = response.content
|
37 |
|
38 |
+
return audio_bytes
|
39 |
|
40 |
# Define the Gradio interface
|
41 |
iface = gr.Interface(
|
42 |
fn=translate_speech,
|
43 |
+
inputs=gr.inputs.Audio(source="microphone", type="file"),
|
44 |
+
outputs=gr.outputs.Audio(type="auto"),
|
45 |
title="Hausa to English Translation",
|
46 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
47 |
)
|