import gradio import torch import numpy as np from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform # Load your pretrained models asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text") translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text", from_tf=True) tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts") tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts") # Define the translation and synthesis functions def translate(audio_signal, sampling_rate): inputs = asr_processor(audio_signal, return_tensors="pt", padding=True, sampling_rate=sampling_rate) logits = asr_model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = asr_processor.decode(predicted_ids[0]) translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated] return translated_text def synthesise(translated_text): inputs = tts_tokenizer(translated_text, return_tensors='pt') audio = tts_model.generate(inputs['input_ids']) return audio def translate_speech(audio, sampling_rate): translated_text = translate(audio, sampling_rate) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) return 16000, synthesised_speech # Define the Gradio interface iface = gradio.Interface(fn=translate_speech, inputs=gradio.inputs.Audio(source="microphone", type="numpy"), outputs="audio") iface.launch()