import gradio as gr import requests import soundfile as sf import numpy as np import tempfile from pydub import AudioSegment # Define the Hugging Face Inference API URLs and headers ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text" TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts" TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text" headers = {"Authorization": "Bearer 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"} # Define the function to query the Hugging Face Inference API def query(api_url, payload): response = requests.post(api_url, headers=headers, json=payload) return response.json() # Define the function to translate speech def translate_speech(audio): print(f"Type of audio: {type(audio)}, Value of audio: {audio}") # Debug line # audio is a tuple (np.ndarray, int), we need to save it as a file sample_rate, audio_data = audio if isinstance(audio_data, np.ndarray) and len(audio_data.shape) == 1: # if audio_data is 1D, reshape it to 2D audio_data = np.reshape(audio_data, (-1, 1)) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: sf.write(f, audio_data, sample_rate) audio_file = f.name # Use the ASR pipeline to transcribe the audio with open(audio_file, "rb") as f: data = f.read() response = requests.post(ASR_API_URL, headers=headers, data=data) output = response.json() # Check if the output contains 'text' if 'text' in output: transcription = output["text"] else: print("The output does not contain 'text'") return # Use the translation pipeline to translate the transcription translated_text = query(TRANSLATION_API_URL, {"inputs": transcription}) # Use the TTS pipeline to synthesize the translated text response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text}) audio_bytes = response.content # Convert the audio bytes to an audio segment audio_segment = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav") # Convert the audio segment to a numpy array audio_data = np.array(audio_segment.get_array_of_samples()) if audio_segment.channels == 2: audio_data = audio_data.reshape((-1, 2)) return audio_data # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone", type="numpy"), outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()