import gradio as gr from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform import torch # Add the import statement for torch # Load your pretrained models asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text") # Load the Hausa translation model translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text") translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text", from_tf=True) # Load the Text-to-Speech model tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts") tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts") def translate_speech(speech): # Extract the audio signal and sample rate audio_signal, sample_rate = speech # Convert stereo to mono if necessary if len(audio_signal.shape) > 1: audio_signal = audio_signal.mean(axis=0) # Transcribe the speech to text inputs = asr_processor(audio_signal, return_tensors="pt", padding=True) logits = asr_model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # Add torch module to access argmax function transcription = asr_processor.decode(predicted_ids[0]) # Translate the text translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated] # Convert the translated text to speech inputs = tts_tokenizer(translated_text, return_tensors='pt') audio = tts_model.generate(inputs['input_ids']) return audio # Define the Gradio interface iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio") iface.launch()