import gradio as gr from transformers import pipeline, VitsModel, AutoTokenizer import numpy as np import torch import scipy # Load the pipeline for speech recognition and translation pipe = pipeline( "automatic-speech-recognition", model="Baghdad99/saad-speech-recognition-hausa-audio-to-text", tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text" ) translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text") model = VitsModel.from_pretrained("facebook/mms-tts-eng") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") # Define the function to translate speech def translate_speech(audio): # Separate the sample rate and the audio data sample_rate, audio_data = audio # Use the speech recognition pipeline to transcribe the audio output = pipe(audio_data) print(f"Output: {output}") # Print the output to see what it contains # Check if the output is not empty and contains 'text' if output and 'text' in output[0]: transcription = output[0]["text"] else: print("The output is empty or does not contain 'text'") return # Use the translation pipeline to translate the transcription translated_text = translator(transcription) print(f"Translated text: {translated_text}") # Print the translated text to see what it contains # Use the VITS model to synthesize the translated text into speech inputs = tokenizer(translated_text[0]['translation_text'], return_tensors="pt") with torch.no_grad(): output = model.generate(**inputs) # Save the synthesized speech to a WAV file scipy.io.wavfile.write("synthesized_speech.wav", rate=model.config.sampling_rate, data=output.float().numpy()) print("Translated text:", translated_text[0]['translation_text']) print("Synthesized speech data shape:", output.shape) print("Sampling rate:", model.config.sampling_rate) return 16000, output.numpy() # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone", type="numpy"), outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()