import gradio as gr from transformers import pipeline, VitsModel, AutoTokenizer import torch import numpy as np # Load the pipeline for speech recognition and translation pipe = pipeline( "automatic-speech-recognition", model="Baghdad99/saad-speech-recognition-hausa-audio-to-text", tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text" ) translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text") # Load the VITS model for text-to-speech synthesis tts_model = VitsModel.from_pretrained("Baghdad99/english_voice_tts") tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts") # Define the function to translate speech def translate_speech(audio): # Separate the sample rate and the audio data sample_rate, audio_data = audio # Use the speech recognition pipeline to transcribe the audio output = pipe(audio_data) print(f"Output: {output}") # Print the output to see what it contains # Check if the output contains 'text' if 'text' in output: transcription = output["text"] else: print("The output does not contain 'text'") return # Use the translation pipeline to translate the transcription translated_text = translator(transcription, return_tensors="pt") print(f"Translated text: {translated_text}") # Print the translated text to see what it contains # Check if the translated text contains 'generated_token_ids' if 'generated_token_ids' in translated_text[0]: # Decode the tokens into text translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) else: print("The translated text does not contain 'generated_token_ids'") return # Use the VITS model to synthesize the translated text tts_inputs = tts_tokenizer(translated_text_str, return_tensors="pt") with torch.no_grad(): synthesised_speech = tts_model(**tts_inputs).waveform print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains # Define the max_range variable max_range = 1.0 # You can adjust this value based on your requirements synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.float32) return 16000, synthesised_speech # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone", type="numpy"), outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()