import gradio as gr input_module1 = gr.inputs.Slider(-124.35, -114.35, step=5, label = "Longitude") input_module2 = gr.inputs.Slider(32, 41, step=5, label = "Latitude") input_module3 = gr.inputs.Slider(1, 52, step=5, label = "Housing_median_age (Year)") input_module4 = gr.inputs.Slider(1, 39996, step=5, label = "Total_rooms") input_module5 = gr.inputs.Slider(1, 6441, step=5, label = "Total_bedrooms") input_module6 = gr.inputs.Slider(3, 35678, step=5, label = "Population") input_module7 = gr.inputs.Slider(1, 6081, step=5, label = "Households") input_module8 = gr.inputs.Slider(0, 15, step=5, label = "Median_income") examples = [["Longitude[-118,-123,-154,-129,-121]"], ["Latitude[32,23,12,16,17]"],["Housing_median_age (Year)[32,23,1,16,49]"], ["Total_rooms[32,23,1,16,49]"],["Total_bedrooms[32,23,1,16,49]"],["Population[3204,234563,3531,53316,35649]"], ["Households[3204,4563,3531,3316,5349]"], ["Median_income[4,11,6,3,14]"]] # Step 6.2: Define different output components # a. define text data type output_module1 = gr.outputs.Textbox(label = "Predicted Housing Prices") # b. define image data type output_module2 = gr.outputs.Image(label = "Output Image") # you can define more output components import pandas as pd import numpy as np housing = pd.read_csv('/housing-2.csv') ## 1. split data to get train and test set from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10) ## 2. clean the missing values train_set_clean = train_set.dropna(subset=["total_bedrooms"]) train_set_clean ## 2. derive training features and training labels train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set ## 4. scale the numeric features in training set from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() ## define the transformer scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset train_features_normalized = scaler.transform(train_features) train_features_normalized ## Step 1: training the data using decision tree algorithm from sklearn.tree import DecisionTreeRegressor ## import the DecisionTree Function tree_reg = DecisionTreeRegressor(random_state=42) ## Initialize the class tree_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning ### Step 2: make a prediction using tree model training_predictions_trees = tree_reg.predict(train_features_normalized) training_predictions_trees def predict_house(input1, input2, input3, input4, input5, input6, input7, input8): input_features = list(input1, input2, input3, input4, input5, input6, input7, input8) scaler = MinMaxScaler() ## define the transformer scaler.fit(input_features) input_features_normalized = scaler.transform(input_features) output_predictions = tree_reg.predict(input_features_normalized) import matplotlib as plt from numpy import asarray from PIL import Image train_set.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4, s=train_set["population"]/100, label="population", figsize=(10,7), c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,sharex=False) plt.legend() plt.plot(input_features[0], input_features[1], 'r*', markersize=25) graph = plt.show() return output_predictions[0], graph # Step 6.4: Put all three component together into the gradio's interface function #gr.Label('CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction') #gr.HTML(show_label= 'CSCI4750/5750 Demo 3: Web Application for Housing Price Prediction') gr.Interface(fn=predict_house, inputs=[input_module1, input_module2, input_module3, input_module4, input_module5, input_module6, input_module7, input_module8], outputs=[output_module1, output_module2], examples = examples ).launch()