File size: 12,748 Bytes
cd1e8dc 628e6c3 cd1e8dc 628e6c3 35f97ba 628e6c3 426fb9c 822b647 426fb9c ba29a7c a30c911 822b647 a30c911 ba29a7c 663f236 ba29a7c cd1e8dc 0a95bff cd1e8dc a5e9129 cd1e8dc 35f97ba be5cb04 f2819ff ce09356 ccf1a03 cd1e8dc 4598830 cd1e8dc 4598830 cd1e8dc e57f9cc cd1e8dc 9702a1f cd1e8dc a5e9129 cd1e8dc 9702a1f a5e9129 cd1e8dc 7b66f42 cd1e8dc 788a013 dc72f49 788a013 cd1e8dc 788a013 cd1e8dc 68696f0 71f4cfe 5461399 cd1e8dc 71f4cfe cd1e8dc 71f4cfe 783c45d cd1e8dc 783c45d cd1e8dc a5e9129 cd1e8dc 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 3f2581f 628e6c3 b40e824 4598830 2d0240c 628e6c3 ba29a7c a30c911 bf28d41 f7a5714 663f236 f7a5714 ba29a7c 628e6c3 cd1e8dc 628e6c3 cd1e8dc 628e6c3 4598830 628e6c3 cd1e8dc 628e6c3 88bd8ea 628e6c3 a5e9129 628e6c3 a5e9129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# This file is adapted from https://huggingface.co/spaces/diffusers/controlnet-canny/blob/main/app.py
# The original license file is LICENSE.ControlNet in this repo.
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel, FlaxDPMSolverMultistepScheduler
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed
from flax.training.common_utils import shard
from flax.jax_utils import replicate
from diffusers.utils import load_image
import jax.numpy as jnp
import jax
import cv2
from PIL import Image
import numpy as np
import gradio as gr
import os
if gr.__version__ != "3.28.3": #doesn't work...
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.28.3")
description = """
Our project is to use diffusion model to change the texture of our robotic arm simulation.
To do so, we first get our simulated images. After, we process these images to get Canny Edge maps. Finally, we can get brand new images by using ControlNet.
Therefore, we are able to change our simulation texture, and still keeping the image composition.
Our objectif for the sprint is to perform data augmentation using ControlNet. We then look for having a model that can augment an image quickly.
To do so, we trained many Controlnets from scratch with different datasets :
* [Coyo-700M](https://github.com/kakaobrain/coyo-dataset)
* [Bridge](https://sites.google.com/view/bridgedata)
A method to accelerate the inference of diffusion model is by simply generating small images. So we decided to work with low resolution images.
After downloading the datasets, we processed them by resizing images to a 128 resolution.
The smallest side of the image (width or height) is resized to 128 and the other side is resized keeping the initial ratio.
After, we retrieve the Canny Edge Map of the images. We performed this preprocess for every datasets we use during the sprint.
We train four different Controlnets. For each one of them, we processed the datasets differently. You can find the description of the processing in the readme file attached to the model repo
[Our ControlNet repo](https://huggingface.co/Baptlem/baptlem-controlnet)
For now, we benchmarked our model on a node of 4 Titan RTX 24Go. We were able to generate a batch of 4 images in a average time of 1.3 seconds!
We also have access to nodes composed of 8 A100 80Go GPUs. The benchmark on one of these nodes will come soon.
"""
traj_description = """
We generated a trajectory of our simulated environment. We will then use it with our different models.
We made these videos on our Titan RTX node.
The prompt we use for every video is "A robotic arm with a gripper and a small cube on a table, super realistic, industrial background"
"""
def create_key(seed=0):
return jax.random.PRNGKey(seed)
def load_controlnet(controlnet_version):
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
"Baptlem/baptlem-controlnet",
subfolder=controlnet_version,
from_flax=True,
dtype=jnp.float32,
)
return controlnet, controlnet_params
def load_sb_pipe(controlnet_version, sb_path="runwayml/stable-diffusion-v1-5"):
controlnet, controlnet_params = load_controlnet(controlnet_version)
scheduler, scheduler_params = FlaxDPMSolverMultistepScheduler.from_pretrained(
sb_path,
subfolder="scheduler"
)
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
sb_path,
controlnet=controlnet,
revision="flax",
dtype=jnp.bfloat16
)
pipe.scheduler = scheduler
params["controlnet"] = controlnet_params
params["scheduler"] = scheduler_params
return pipe, params
controlnet_path = "Baptlem/baptlem-controlnet"
controlnet_version = "coyo-500k"
# Constants
low_threshold = 100
high_threshold = 200
print(os.path.abspath('.'))
print(os.listdir("."))
print("Gradio version:", gr.__version__)
# pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload()
# pipe.enable_attention_slicing()
print("Loaded models...")
def pipe_inference(
image,
prompt,
is_canny=False,
num_samples=4,
resolution=128,
num_inference_steps=50,
guidance_scale=7.5,
model="coyo-500k",
seed=0,
negative_prompt="",
):
print("Loading pipe")
pipe, params = load_sb_pipe(model)
if not isinstance(image, np.ndarray):
image = np.array(image)
processed_image = resize_image(image, resolution) #-> PIL
if not is_canny:
resized_image, processed_image = preprocess_canny(processed_image, resolution)
rng = create_key(seed)
rng = jax.random.split(rng, jax.device_count())
prompt_ids = pipe.prepare_text_inputs([prompt] * num_samples)
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompt] * num_samples)
processed_image = pipe.prepare_image_inputs([processed_image] * num_samples)
p_params = replicate(params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
print("Inference...")
output = pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
print("Finished inference...")
# all_outputs = []
# all_outputs.append(image)
# if not is_canny:
# all_outputs.append(resized_image)
# for image in output.images:
# all_outputs.append(image)
all_outputs = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:])))
return all_outputs
def resize_image(image, resolution):
if not isinstance(image, np.ndarray):
image = np.array(image)
h, w = image.shape[:2]
ratio = w/h
if ratio > 1 :
resized_image = cv2.resize(image, (int(resolution*ratio), resolution), interpolation=cv2.INTER_NEAREST)
elif ratio < 1 :
resized_image = cv2.resize(image, (resolution, int(resolution/ratio)), interpolation=cv2.INTER_NEAREST)
else:
resized_image = cv2.resize(image, (resolution, resolution), interpolation=cv2.INTER_NEAREST)
return Image.fromarray(resized_image)
def preprocess_canny(image, resolution=128):
if not isinstance(image, np.ndarray):
image = np.array(image)
processed_image = cv2.Canny(image, low_threshold, high_threshold)
processed_image = processed_image[:, :, None]
processed_image = np.concatenate([processed_image, processed_image, processed_image], axis=2)
resized_image = Image.fromarray(image)
processed_image = Image.fromarray(processed_image)
return resized_image, processed_image
def create_demo(process, max_images=12, default_num_images=4):
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown('## Control Stable Diffusion with Canny Edge Maps')
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type='numpy')
prompt = gr.Textbox(label='Prompt')
run_button = gr.Button(label='Run')
with gr.Accordion('Advanced options', open=False):
is_canny = gr.Checkbox(
label='Is canny', value=False)
num_samples = gr.Slider(label='Images',
minimum=1,
maximum=max_images,
value=default_num_images,
step=1)
"""
canny_low_threshold = gr.Slider(
label='Canny low threshold',
minimum=1,
maximum=255,
value=100,
step=1)
canny_high_threshold = gr.Slider(
label='Canny high threshold',
minimum=1,
maximum=255,
value=200,
step=1)
"""
resolution = gr.Slider(label='Resolution',
minimum=128,
maximum=128,
value=128,
step=1)
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=20,
step=1)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.5,
step=0.1)
model = gr.Dropdown(choices=["coyo-500k", "bridge-2M", "coyo1M-bridge2M", "coyo28-bridge4"],
value="coyo-500k",
label="Model used for inference",
info="Find every models at https://huggingface.co/Baptlem/baptlem-controlnet")
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=2147483647,
step=1,
randomize=True)
n_prompt = gr.Textbox(
label='Negative Prompt',
value=
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
)
with gr.Column():
result = gr.Gallery(label='Output',
show_label=False,
elem_id='gallery').style(grid=2,
height='auto')
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column():
gr.Markdown()
with gr.Column():
gr.Video("./trajectory_hf/trajectory.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo-500k model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo-500k.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with bridge-2M model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_bridge-2M.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo1M-bridge2M model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo1M-bridge2M.avi",
format="avi",
interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("Trajectory processed with coyo28-bridge4 model :")
with gr.Column():
gr.Video("./trajectory_hf/trajectory_coyo28-bridge4.avi",
format="avi",
interactive=False)
inputs = [
input_image,
prompt,
is_canny,
num_samples,
resolution,
#canny_low_threshold,
#canny_high_threshold,
num_steps,
guidance_scale,
model,
seed,
n_prompt,
]
prompt.submit(fn=process, inputs=inputs, outputs=result)
run_button.click(fn=process,
inputs=inputs,
outputs=result,
api_name='canny')
return demo
if __name__ == '__main__':
pipe_inference
demo = create_demo(pipe_inference)
demo.queue().launch()
# gr.Interface(create_demo).launch()
|