Spaces:
Running
Running
import onnxruntime | |
import librosa | |
import numpy as np | |
import soundfile | |
class ContentVec: | |
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None): | |
print("load model(s) from {}".format(vec_path)) | |
if device == "cpu" or device is None: | |
providers = ["CPUExecutionProvider"] | |
elif device == "cuda": | |
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] | |
else: | |
raise RuntimeError("Unsportted Device") | |
self.model = onnxruntime.InferenceSession(vec_path, providers=providers) | |
def __call__(self, wav): | |
return self.forward(wav) | |
def forward(self, wav): | |
feats = wav | |
if feats.ndim == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.ndim == 1, feats.ndim | |
feats = np.expand_dims(np.expand_dims(feats, 0), 0) | |
onnx_input = {self.model.get_inputs()[0].name: feats} | |
logits = self.model.run(None, onnx_input)[0] | |
return logits.transpose(0, 2, 1) | |
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs): | |
if f0_predictor == "pm": | |
from infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor | |
f0_predictor_object = PMF0Predictor( | |
hop_length=hop_length, sampling_rate=sampling_rate | |
) | |
elif f0_predictor == "harvest": | |
from infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor | |
f0_predictor_object = HarvestF0Predictor( | |
hop_length=hop_length, sampling_rate=sampling_rate | |
) | |
elif f0_predictor == "dio": | |
from infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor | |
f0_predictor_object = DioF0Predictor( | |
hop_length=hop_length, sampling_rate=sampling_rate | |
) | |
else: | |
raise Exception("Unknown f0 predictor") | |
return f0_predictor_object | |
class OnnxRVC: | |
def __init__( | |
self, | |
model_path, | |
sr=40000, | |
hop_size=512, | |
vec_path="vec-768-layer-12", | |
device="cpu", | |
): | |
vec_path = f"pretrained/{vec_path}.onnx" | |
self.vec_model = ContentVec(vec_path, device) | |
if device == "cpu" or device is None: | |
providers = ["CPUExecutionProvider"] | |
elif device == "cuda": | |
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] | |
else: | |
raise RuntimeError("Unsportted Device") | |
self.model = onnxruntime.InferenceSession(model_path, providers=providers) | |
self.sampling_rate = sr | |
self.hop_size = hop_size | |
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd): | |
onnx_input = { | |
self.model.get_inputs()[0].name: hubert, | |
self.model.get_inputs()[1].name: hubert_length, | |
self.model.get_inputs()[2].name: pitch, | |
self.model.get_inputs()[3].name: pitchf, | |
self.model.get_inputs()[4].name: ds, | |
self.model.get_inputs()[5].name: rnd, | |
} | |
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16) | |
def inference( | |
self, | |
raw_path, | |
sid, | |
f0_method="dio", | |
f0_up_key=0, | |
pad_time=0.5, | |
cr_threshold=0.02, | |
): | |
f0_min = 50 | |
f0_max = 1100 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
f0_predictor = get_f0_predictor( | |
f0_method, | |
hop_length=self.hop_size, | |
sampling_rate=self.sampling_rate, | |
threshold=cr_threshold, | |
) | |
wav, sr = librosa.load(raw_path, sr=self.sampling_rate) | |
org_length = len(wav) | |
if org_length / sr > 50.0: | |
raise RuntimeError("Reached Max Length") | |
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000) | |
wav16k = wav16k | |
hubert = self.vec_model(wav16k) | |
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32) | |
hubert_length = hubert.shape[1] | |
pitchf = f0_predictor.compute_f0(wav, hubert_length) | |
pitchf = pitchf * 2 ** (f0_up_key / 12) | |
pitch = pitchf.copy() | |
f0_mel = 1127 * np.log(1 + pitch / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
pitch = np.rint(f0_mel).astype(np.int64) | |
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32) | |
pitch = pitch.reshape(1, len(pitch)) | |
ds = np.array([sid]).astype(np.int64) | |
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32) | |
hubert_length = np.array([hubert_length]).astype(np.int64) | |
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze() | |
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant") | |
return out_wav[0:org_length] | |