File size: 10,309 Bytes
6c944f8 8399d0f 6c944f8 8399d0f 6c944f8 8399d0f 6c944f8 8399d0f 6c944f8 8399d0f 6c944f8 8399d0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import gradio as gr
from huggingface_hub import InferenceClient
from PIL import Image, ImageEnhance
import torch
import os
import numpy as np
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
# --- Model 1: AI Chatbot Setup ---
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Personalities for AI Chatbot
PERSONALITIES = {
"Friendly": "You are a friendly and helpful assistant.",
"Professional": "You are a professional and concise assistant.",
"Humorous": "You are a witty and humorous assistant.",
"Empathetic": "You are a compassionate and empathetic assistant."
}
# Chatbot Functions
def respond(message, history, personality):
system_message = PERSONALITIES[personality]
messages = [{"role": "system", "content": system_message}]
for user_message, bot_message in history:
messages.append({"role": "user", "content": user_message})
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = client.chat_completion(messages, max_tokens=1024)
bot_message = response["choices"][0]["message"]["content"]
history.append((message, bot_message))
return history, ""
def generate_fun_fact(history):
message = "Give me a fun fact."
system_message = "You are a helpful assistant that shares fun facts when asked."
messages = [{"role": "system", "content": system_message}]
for user_message, bot_message in history:
messages.append({"role": "user", "content": user_message})
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = client.chat_completion(messages, max_tokens=256)
fun_fact = response["choices"][0]["message"]["content"]
history.append((message, fun_fact))
return history
def generate_daily_challenge(history):
message = "Give me a daily challenge."
system_message = "You are a helpful assistant that gives fun or motivational daily challenges."
messages = [{"role": "system", "content": system_message}]
for user_message, bot_message in history:
messages.append({"role": "user", "content": user_message})
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = client.chat_completion(messages, max_tokens=256)
challenge = response["choices"][0]["message"]["content"]
history.append((message, challenge))
return history
def generate_inspiration(history):
message = "Give me an inspirational quote or motivational message."
system_message = "You are a helpful assistant that provides inspiring or motivational quotes when asked."
messages = [{"role": "system", "content": system_message}]
for user_message, bot_message in history:
messages.append({"role": "user", "content": user_message})
messages.append({"role": "assistant", "content": bot_message})
messages.append({"role": "user", "content": message})
response = client.chat_completion(messages, max_tokens=256)
inspiration = response["choices"][0]["message"]["content"]
history.append((message, inspiration))
return history
def clear_conversation():
return [], ""
#######
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if not os.path.exists("saved_models"):
os.mkdir("saved_models")
os.system("mv isnet.pth saved_models/")
class GOSNormalize(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()
net = build_model(hypar, device)
def inference(image):
image_path = image
image_tensor, orig_size = load_image(image_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(image).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
return [im_rgba, pil_mask]
# Functions Added From Team
def rotate_image(image, degrees):
img = Image.open(image).rotate(degrees)
return img
def resize_image(image, width, height):
img = Image.open(image).resize((width, height))
return img
def convert_to_grayscale(image):
img = Image.open(image).convert('L')
return img
def adjust_brightness(image, brightness_factor):
img = Image.open(image)
enhancer = ImageEnhance.Brightness(img)
img_enhanced = enhancer.enhance(brightness_factor)
return img_enhanced
# Custom CSS Added From Team
custom_css = """
body {
background-color: #f0f0f0;
}
.gradio-container {
max-width: 900px;
margin: auto;
background-color: #ffffff;
padding: 20px;
border-radius: 12px;
box-shadow: 0px 4px 16px rgba(0, 0, 0, 0.2);
}
button.lg {
background-color: #4CAF50;
color: white;
border: none;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
transition-duration: 0.4s;
cursor: pointer;
border-radius: 8px;
}
button.lg:hover {
background-color: #45a049;
color: white;
}
"""
# Used Some Codes From Yang's Chatbot
with gr.Blocks(css=custom_css) as background_remover_interface:
gr.Markdown("<h1 style='text-align: center;'>🚩 Image Processor with Brightness Adjustment 🚩</h1>")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type='filepath')
rotate_button = gr.Button("Rotate Image")
resize_button = gr.Button("Resize Image")
grayscale_button = gr.Button("Convert to Grayscale")
brightness_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness")
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("Clear", variant="secondary")
with gr.Column():
output_image = gr.Image(label="Output Image")
mask_image = gr.Image(label="Mask")
# AI Generated: Use Gradio Blocks to organize the interface with buttons
rotate_button.click(rotate_image, inputs=[input_image, gr.Slider(minimum=0, maximum=360, step=1, value=90, label="Rotation Degrees")], outputs=output_image)
resize_button.click(resize_image, inputs=[input_image, gr.Number(value=512, label="Width"), gr.Number(value=512, label="Height")], outputs=output_image)
grayscale_button.click(convert_to_grayscale, inputs=input_image, outputs=output_image)
# input_image
brightness_slider.change(adjust_brightness, inputs=[input_image, brightness_slider], outputs=output_image)
submit_button.click(inference, inputs=input_image, outputs=[output_image, mask_image])
clear_button.click(lambda: (None, None, None), inputs=None, outputs=[input_image, output_image, mask_image])
#####
# --- Gradio Interfaces ---
# AI Chatbot Interface
with gr.Blocks(css=custom_css) as chatbot_interface:
gr.Markdown("### AI Chatbot - Choose a personality and start chatting")
personality = gr.Radio(choices=["Friendly", "Professional", "Humorous", "Empathetic"], value="Friendly", label="Personality")
chatbot = gr.Chatbot(label="Chatbot", height=300)
message = gr.Textbox(placeholder="Type your message here...")
history = gr.State([])
send_btn = gr.Button("Send")
clear_btn = gr.Button("Clear")
fun_fact_btn = gr.Button("Fun Fact")
inspire_me_btn = gr.Button("Inspire Me")
challenge_btn = gr.Button("Daily Challenge")
send_btn.click(respond, inputs=[message, history, personality], outputs=[chatbot, message])
clear_btn.click(clear_conversation, outputs=[chatbot, message])
fun_fact_btn.click(generate_fun_fact, inputs=history, outputs=chatbot)
challenge_btn.click(generate_daily_challenge, inputs=history, outputs=chatbot)
inspire_me_btn.click(generate_inspiration, inputs=history, outputs=chatbot)
# Combine the two interfaces into a single app with tabs
app = gr.TabbedInterface([chatbot_interface, background_remover_interface], ["AI Chatbot", "Background Remover"])
# Launch the app
app.launch(share=True)
|