File size: 10,309 Bytes
6c944f8
8399d0f
6c944f8
 
8399d0f
 
6c944f8
 
 
8399d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c944f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8399d0f
6c944f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8399d0f
6c944f8
 
 
 
 
 
8399d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gradio as gr
from huggingface_hub import InferenceClient
from PIL import Image, ImageEnhance
import torch
import os
import numpy as np
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F

# --- Model 1: AI Chatbot Setup ---
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Personalities for AI Chatbot
PERSONALITIES = {
    "Friendly": "You are a friendly and helpful assistant.",
    "Professional": "You are a professional and concise assistant.",
    "Humorous": "You are a witty and humorous assistant.",
    "Empathetic": "You are a compassionate and empathetic assistant."
}

# Chatbot Functions
def respond(message, history, personality):
    system_message = PERSONALITIES[personality]
    messages = [{"role": "system", "content": system_message}]

    for user_message, bot_message in history:
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": bot_message})

    messages.append({"role": "user", "content": message})
    response = client.chat_completion(messages, max_tokens=1024)
    bot_message = response["choices"][0]["message"]["content"]
    history.append((message, bot_message))
    return history, ""

def generate_fun_fact(history):
    message = "Give me a fun fact."
    system_message = "You are a helpful assistant that shares fun facts when asked."
    messages = [{"role": "system", "content": system_message}]

    for user_message, bot_message in history:
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": bot_message})

    messages.append({"role": "user", "content": message})
    response = client.chat_completion(messages, max_tokens=256)
    fun_fact = response["choices"][0]["message"]["content"]
    history.append((message, fun_fact))
    return history

def generate_daily_challenge(history):
    message = "Give me a daily challenge."
    system_message = "You are a helpful assistant that gives fun or motivational daily challenges."
    messages = [{"role": "system", "content": system_message}]

    for user_message, bot_message in history:
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": bot_message})

    messages.append({"role": "user", "content": message})
    response = client.chat_completion(messages, max_tokens=256)
    challenge = response["choices"][0]["message"]["content"]
    history.append((message, challenge))
    return history

def generate_inspiration(history):
    message = "Give me an inspirational quote or motivational message."
    system_message = "You are a helpful assistant that provides inspiring or motivational quotes when asked."
    messages = [{"role": "system", "content": system_message}]

    for user_message, bot_message in history:
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": bot_message})

    messages.append({"role": "user", "content": message})
    response = client.chat_completion(messages, max_tokens=256)
    inspiration = response["choices"][0]["message"]["content"]
    history.append((message, inspiration))
    return history

def clear_conversation():
    return [], ""




#######

os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

device = 'cuda' if torch.cuda.is_available() else 'cpu'

if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)
    if hypar["restore_model"] != "":
        net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
    net.eval()
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0, :, :, :]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi)

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)

hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()

net = build_model(hypar, device)

def inference(image):
    image_path = image
    image_tensor, orig_size = load_image(image_path, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)
    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(image).convert("RGB")
    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)
    return [im_rgba, pil_mask]

# Functions Added From Team
def rotate_image(image, degrees):
    img = Image.open(image).rotate(degrees)
    return img

def resize_image(image, width, height):
    img = Image.open(image).resize((width, height))
    return img

def convert_to_grayscale(image):
    img = Image.open(image).convert('L')
    return img

def adjust_brightness(image, brightness_factor):
    img = Image.open(image)
    enhancer = ImageEnhance.Brightness(img)
    img_enhanced = enhancer.enhance(brightness_factor)
    return img_enhanced

# Custom CSS Added From Team
custom_css = """
body {
    background-color: #f0f0f0;
}
.gradio-container {
    max-width: 900px;
    margin: auto;
    background-color: #ffffff;
    padding: 20px;
    border-radius: 12px;
    box-shadow: 0px 4px 16px rgba(0, 0, 0, 0.2);
}
button.lg {
    background-color: #4CAF50;
    color: white;
    border: none;
    padding: 10px 20px;
    text-align: center;
    text-decoration: none;
    display: inline-block;
    font-size: 16px;
    margin: 4px 2px;
    transition-duration: 0.4s;
    cursor: pointer;
    border-radius: 8px;
}
button.lg:hover {
    background-color: #45a049;
    color: white;
}
"""

# Used Some Codes From Yang's Chatbot
with gr.Blocks(css=custom_css) as background_remover_interface:
    gr.Markdown("<h1 style='text-align: center;'>🚩 Image Processor with Brightness Adjustment 🚩</h1>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type='filepath')
            rotate_button = gr.Button("Rotate Image")
            resize_button = gr.Button("Resize Image")
            grayscale_button = gr.Button("Convert to Grayscale")
            brightness_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness")
            submit_button = gr.Button("Submit", variant="primary")
            clear_button = gr.Button("Clear", variant="secondary")
        with gr.Column():
            output_image = gr.Image(label="Output Image")
            mask_image = gr.Image(label="Mask")

    # AI Generated: Use Gradio Blocks to organize the interface with buttons
    rotate_button.click(rotate_image, inputs=[input_image, gr.Slider(minimum=0, maximum=360, step=1, value=90, label="Rotation Degrees")], outputs=output_image)
    resize_button.click(resize_image, inputs=[input_image, gr.Number(value=512, label="Width"), gr.Number(value=512, label="Height")], outputs=output_image)
    grayscale_button.click(convert_to_grayscale, inputs=input_image, outputs=output_image)
    # input_image
    brightness_slider.change(adjust_brightness, inputs=[input_image, brightness_slider], outputs=output_image)

    submit_button.click(inference, inputs=input_image, outputs=[output_image, mask_image])

    clear_button.click(lambda: (None, None, None), inputs=None, outputs=[input_image, output_image, mask_image])





#####


# --- Gradio Interfaces ---
# AI Chatbot Interface
with gr.Blocks(css=custom_css) as chatbot_interface:
    gr.Markdown("### AI Chatbot - Choose a personality and start chatting")
    personality = gr.Radio(choices=["Friendly", "Professional", "Humorous", "Empathetic"], value="Friendly", label="Personality")
    chatbot = gr.Chatbot(label="Chatbot", height=300)
    message = gr.Textbox(placeholder="Type your message here...")
    history = gr.State([])
    send_btn = gr.Button("Send")
    clear_btn = gr.Button("Clear")
    fun_fact_btn = gr.Button("Fun Fact")
    inspire_me_btn = gr.Button("Inspire Me")
    challenge_btn = gr.Button("Daily Challenge")
    send_btn.click(respond, inputs=[message, history, personality], outputs=[chatbot, message])
    clear_btn.click(clear_conversation, outputs=[chatbot, message])
    fun_fact_btn.click(generate_fun_fact, inputs=history, outputs=chatbot)
    challenge_btn.click(generate_daily_challenge, inputs=history, outputs=chatbot)
    inspire_me_btn.click(generate_inspiration, inputs=history, outputs=chatbot)




# Combine the two interfaces into a single app with tabs
app = gr.TabbedInterface([chatbot_interface, background_remover_interface], ["AI Chatbot", "Background Remover"])

# Launch the app
app.launch(share=True)