File size: 5,986 Bytes
6c944f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import cv2
import gradio as gr
import os
from PIL import Image, ImageEnhance
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")

from data_loader_cache import normalize, im_reader, im_preprocess 
from models import *

device = 'cuda' if torch.cuda.is_available() else 'cpu'

if not os.path.exists("saved_models"):
    os.mkdir("saved_models")
    os.system("mv isnet.pth saved_models/")

class GOSNormalize(object):
    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    if hypar["model_digit"] == "half":
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)
    if hypar["restore_model"] != "":
        net.load_state_dict(torch.load(hypar["model_path"] + "/" + hypar["restore_model"], map_location=device))
    net.eval()
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    if hypar["model_digit"] == "full":
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0, :, :, :]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val - mi) / (ma - mi)

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)

hypar = {}
hypar["model_path"] = "./saved_models"
hypar["restore_model"] = "isnet.pth"
hypar["interm_sup"] = False
hypar["model_digit"] = "full"
hypar["seed"] = 0
hypar["cache_size"] = [1024, 1024]
hypar["input_size"] = [1024, 1024]
hypar["crop_size"] = [1024, 1024]
hypar["model"] = ISNetDIS()

net = build_model(hypar, device)

def inference(image):
    image_path = image
    image_tensor, orig_size = load_image(image_path, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)
    pil_mask = Image.fromarray(mask).convert('L')
    im_rgb = Image.open(image).convert("RGB")
    im_rgba = im_rgb.copy()
    im_rgba.putalpha(pil_mask)
    return [im_rgba, pil_mask]

# Functions Added From Team
def rotate_image(image, degrees):
    img = Image.open(image).rotate(degrees)
    return img

def resize_image(image, width, height):
    img = Image.open(image).resize((width, height))
    return img

def convert_to_grayscale(image):
    img = Image.open(image).convert('L')
    return img

def adjust_brightness(image, brightness_factor):
    img = Image.open(image)
    enhancer = ImageEnhance.Brightness(img)
    img_enhanced = enhancer.enhance(brightness_factor)
    return img_enhanced

# Custom CSS Added From Team
custom_css = """
body {
    background-color: #f0f0f0;
}
.gradio-container {
    max-width: 900px;
    margin: auto;
    background-color: #ffffff;
    padding: 20px;
    border-radius: 12px;
    box-shadow: 0px 4px 16px rgba(0, 0, 0, 0.2);
}
button.lg {
    background-color: #4CAF50;
    color: white;
    border: none;
    padding: 10px 20px;
    text-align: center;
    text-decoration: none;
    display: inline-block;
    font-size: 16px;
    margin: 4px 2px;
    transition-duration: 0.4s;
    cursor: pointer;
    border-radius: 8px;
}
button.lg:hover {
    background-color: #45a049;
    color: white;
}
"""

# Used Some Codes From Yang's Chatbot
with gr.Blocks(css=custom_css) as interface:
    gr.Markdown(f"# {title}")
    gr.Markdown("<h1 style='text-align: center;'>🚩 Image Processor with Brightness Adjustment 🚩</h1>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type='filepath')
            rotate_button = gr.Button("Rotate Image")
            resize_button = gr.Button("Resize Image")
            grayscale_button = gr.Button("Convert to Grayscale")
            brightness_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness")
            submit_button = gr.Button("Submit", variant="primary")
            clear_button = gr.Button("Clear", variant="secondary")
        with gr.Column():
            output_image = gr.Image(label="Output Image")
            mask_image = gr.Image(label="Mask")

    # AI Generated: Use Gradio Blocks to organize the interface with buttons
    rotate_button.click(rotate_image, inputs=[input_image, gr.Slider(minimum=0, maximum=360, step=1, value=90, label="Rotation Degrees")], outputs=output_image)
    resize_button.click(resize_image, inputs=[input_image, gr.Number(value=512, label="Width"), gr.Number(value=512, label="Height")], outputs=output_image)
    grayscale_button.click(convert_to_grayscale, inputs=input_image, outputs=output_image)
    
    brightness_slider.change(adjust_brightness, inputs=[input_image, brightness_slider], outputs=output_image)

    submit_button.click(inference, inputs=input_image, outputs=[output_image, mask_image])

    clear_button.click(lambda: (None, None, None), inputs=None, outputs=[input_image, output_image, mask_image])

interface.launch(share=True)