import gradio as gr from huggingface_hub import InferenceClient # --- Model 1: AI Chatbot Setup --- client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") # Personalities for AI Chatbot PERSONALITIES = { "Friendly": "You are a friendly and helpful assistant.", "Professional": "You are a professional and concise assistant.", "Humorous": "You are a witty and humorous assistant.", "Empathetic": "You are a compassionate and empathetic assistant." } # Chatbot Functions def respond(message, history, personality): system_message = PERSONALITIES[personality] messages = [{"role": "system", "content": system_message}] for user_message, bot_message in history: messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = client.chat_completion(messages, max_tokens=1024) bot_message = response["choices"][0]["message"]["content"] history.append((message, bot_message)) return history, "" def generate_fun_fact(history): message = "Give me a fun fact." system_message = "You are a helpful assistant that shares fun facts when asked." messages = [{"role": "system", "content": system_message}] for user_message, bot_message in history: messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = client.chat_completion(messages, max_tokens=256) fun_fact = response["choices"][0]["message"]["content"] history.append((message, fun_fact)) return history def generate_daily_challenge(history): message = "Give me a daily challenge." system_message = "You are a helpful assistant that gives fun or motivational daily challenges." messages = [{"role": "system", "content": system_message}] for user_message, bot_message in history: messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = client.chat_completion(messages, max_tokens=256) challenge = response["choices"][0]["message"]["content"] history.append((message, challenge)) return history def generate_inspiration(history): message = "Give me an inspirational quote or motivational message." system_message = "You are a helpful assistant that provides inspiring or motivational quotes when asked." messages = [{"role": "system", "content": system_message}] for user_message, bot_message in history: messages.append({"role": "user", "content": user_message}) messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = client.chat_completion(messages, max_tokens=256) inspiration = response["choices"][0]["message"]["content"] history.append((message, inspiration)) return history def clear_conversation(): return [], "" # Custom CSS custom_css = """ body { background-color: #f0f0f0; } .gradio-container { max-width: 900px; margin: auto; background-color: #ffffff; padding: 20px; border-radius: 12px; box-shadow: 0px 4px 16px rgba(0, 0, 0, 0.2); } """ # --- Gradio Interface --- with gr.Blocks(css=custom_css) as chatbot_interface: gr.Markdown("### AI Chatbot - Choose a personality and start chatting") personality = gr.Radio(choices=["Friendly", "Professional", "Humorous", "Empathetic"], value="Friendly", label="Personality") chatbot = gr.Chatbot(label="Chatbot", height=300) message = gr.Textbox(placeholder="Type your message here...") history = gr.State([]) send_btn = gr.Button("Send") clear_btn = gr.Button("Clear") fun_fact_btn = gr.Button("Fun Fact") inspire_me_btn = gr.Button("Inspire Me") challenge_btn = gr.Button("Daily Challenge") send_btn.click(respond, inputs=[message, history, personality], outputs=[chatbot, message]) clear_btn.click(clear_conversation, outputs=[chatbot, message]) fun_fact_btn.click(generate_fun_fact, inputs=history, outputs=chatbot) challenge_btn.click(generate_daily_challenge, inputs=history, outputs=chatbot) inspire_me_btn.click(generate_inspiration, inputs=history, outputs=chatbot) # Launch the app chatbot_interface.launch(share=True, enable_queue=True)