File size: 9,605 Bytes
239854d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from Models import Models
from ResumeSegmenter import ResumeSegmenter
from datetime import datetime
from dateutil import parser
import re
from string import punctuation

class ResumeParser:
    def __init__(self, ner, ner_dates, zero_shot_classifier, tagger):
        self.models = Models()
        self.segmenter = ResumeSegmenter(zero_shot_classifier)
        self.ner, self.ner_dates, self.zero_shot_classifier, self.tagger = ner, ner_dates, zero_shot_classifier, tagger 
        self.parsed_cv = {}

    def parse(self, resume_lines):
        resume_segments = self.segmenter.segment(resume_lines)
        print("Parsing the Resume...")
        for segment_name in resume_segments:
            if segment_name == "contact_info":
                contact_info = resume_segments[segment_name]
                self.parse_contact_info(contact_info)
            elif segment_name == "work_and_employment":
                resume_segment = resume_segments[segment_name]
                self.parse_job_history(resume_segment)
        return self.parsed_cv


    def parse_contact_info(self, contact_info):
        contact_info_dict = {}
        name = self.find_person_name(contact_info)
        email = self.find_contact_email(contact_info)
        self.parsed_cv['Name'] = name
        contact_info_dict["Email"] = email
        self.parsed_cv['Contact Info'] = contact_info_dict

    def find_person_name(self, items):
        class_score = []
        splitter = re.compile(r'[{}]+'.format(re.escape(punctuation.replace("&", "") )))
        classes = ["person name", "address", "email", "title"]
        for item in items: 
            elements = splitter.split(item)
            for element in elements:
                element = ''.join(i for i in element.strip() if not i.isdigit())
                if not len(element.strip().split()) > 1: continue
                out = self.zero_shot_classifier(element, classes)
                highest = sorted(zip(out["labels"], out["scores"]), key=lambda x: x[1])[-1]
                if highest[0] == "person name":
                    class_score.append((element, highest[1]))
        if len(class_score):
            return sorted(class_score, key=lambda x: x[1], reverse=True)[0][0]
        return ""
    
    def find_contact_email(self, items):
        for item in items: 
            match = re.search(r'[\w.+-]+@[\w-]+\.[\w.-]+', item)
            if match:
                return match.group(0)
        return ""

    def parse_job_history(self, resume_segment):
        idx_job_title = self.get_job_titles(resume_segment)
        current_and_below = False
        if not len(idx_job_title): 
            self.parsed_cv["Job History"] = [] 
            return
        if idx_job_title[0][0] == 0: current_and_below = True
        job_history = []
        for ls_idx, (idx, job_title) in enumerate(idx_job_title): 
            job_info = {}
            job_info["Job Title"] = self.filter_job_title(job_title) 
            # company 
            if current_and_below: line1, line2 = idx, idx+1
            else: line1, line2 = idx, idx-1 
            job_info["Company"] = self.get_job_company(line1, line2, resume_segment)
            if current_and_below: st_span = idx
            else: st_span = idx-1
            # Dates 
            if ls_idx == len(idx_job_title) - 1: end_span = len(resume_segment) 
            else: end_span = idx_job_title[ls_idx+1][0]
            start, end = self.get_job_dates(st_span, end_span, resume_segment)
            job_info["Start Date"] = start
            job_info["End Date"] = end
            job_history.append(job_info)
        self.parsed_cv["Job History"] = job_history 

    def get_job_titles(self, resume_segment):
        classes = ["organization", "institution", "company", "job title", "work details"]
        idx_line = []
        for idx, line in enumerate(resume_segment):
            has_verb = False
            line_modifed = ''.join(i for i in line if not i.isdigit())
            sentence = self.models.get_flair_sentence(line_modifed)
            self.tagger.predict(sentence)
            tags = []
            for entity in sentence.get_spans('pos'):
                tags.append(entity.tag)
                if entity.tag.startswith("V"): 
                    has_verb = True

            most_common_tag = max(set(tags), key=tags.count)
            if most_common_tag == "NNP":
                if not has_verb:
                    out = self.zero_shot_classifier(line, classes)
                    class_score = zip(out["labels"], out["scores"])
                    highest = sorted(class_score, key=lambda x: x[1])[-1]

                    if highest[0] == "job title":
                        idx_line.append((idx, line))

        return idx_line

    def get_job_dates(self, st, end, resume_segment):
        search_span = resume_segment[st:end]
        dates = []
        for line in search_span:
            for dt in self.get_ner_in_line(line, "DATE"):
                if self.isvalidyear(dt.strip()):
                    dates.append(dt)
        if len(dates): first = dates[0]
        exists_second = False
        if len(dates) > 1:
            exists_second = True
            second = dates[1]
        
        if len(dates) > 0:
            if self.has_two_dates(first):
                d1, d2 = self.get_two_dates(first)
                return self.format_date(d1), self.format_date(d2)
            elif exists_second and self.has_two_dates(second): 
                d1, d2 = self.get_two_dates(second)
                return self.format_date(d1), self.format_date(d2)
            else: 
                if exists_second: 
                    st = self.format_date(first)
                    end = self.format_date(second)
                    return st, end
                else: 
                    return (self.format_date(first), "") 
        else: return ("", "")

    
    
    def filter_job_title(self, job_title):
        job_title_splitter = re.compile(r'[{}]+'.format(re.escape(punctuation.replace("&", "") )))
        job_title = ''.join(i for i in job_title if not i.isdigit())
        tokens = job_title_splitter.split(job_title)
        tokens = [''.join([i for i in tok.strip() if (i.isalpha() or i.strip()=="")]) for tok in tokens if tok.strip()] 
        classes = ["company", "organization", "institution", "job title", "responsibility",  "details"]
        new_title = []
        for token in tokens:
            if not token: continue
            res = self.zero_shot_classifier(token, classes)
            class_score = zip(res["labels"], res["scores"])
            highest = sorted(class_score, key=lambda x: x[1])[-1]
            if highest[0] == "job title":
                new_title.append(token.strip())
        if len(new_title):
            return ', '.join(new_title)
        else: return ', '.join(tokens)

    def has_two_dates(self, date):
        years = self.get_valid_years()
        count = 0
        for year in years:
            if year in str(date):
                count+=1
        return count == 2
    
    def get_two_dates(self, date):
        years = self.get_valid_years()
        idxs = []
        for year in years:
            if year in date: 
                idxs.append(date.index(year))
        min_idx = min(idxs)  
        first = date[:min_idx+4]
        second = date[min_idx+4:]
        return first, second
    def get_valid_years(self):
        current_year = datetime.today().year
        years = [str(i) for i in range(current_year-100, current_year)]
        return years

    def format_date(self, date):
        out = self.parse_date(date)
        if out: 
            return out
        else: 
            date = self.clean_date(date)
            out = self.parse_date(date)
            if out: 
                return out
            else: 
                return date

    def clean_date(self, date): 
        try:
            date = ''.join(i for i in date if i.isalnum() or i =='-' or i == '/')
            return date
        except:
            return date

    def parse_date(self, date):
        try:
            date = parser.parse(date)
            return date.strftime("%m-%Y")
        except: 
            try:
                date = datetime(date)
                return date.strftime("%m-%Y")
            except: 
                return 0 


    def isvalidyear(self, date):
        current_year = datetime.today().year
        years = [str(i) for i in range(current_year-100, current_year)]
        for year in years:
            if year in str(date):
                return True 
        return False

    def get_ner_in_line(self, line, entity_type):
        if entity_type == "DATE": ner = self.ner_dates
        else: ner = self.ner
        return [i['word'] for i in ner(line) if i['entity_group'] == entity_type]
        

    def get_job_company(self, idx, idx1, resume_segment):
        job_title = resume_segment[idx]
        if not idx1 <= len(resume_segment)-1: context = ""
        else:context = resume_segment[idx1]
        candidate_companies = self.get_ner_in_line(job_title, "ORG") + self.get_ner_in_line(context, "ORG")
        classes = ["organization", "company", "institution", "not organization", "not company", "not institution"]
        scores = []
        for comp in candidate_companies:
            res = self.zero_shot_classifier(comp, classes)['scores']
            scores.append(max(res[:3]))
        sorted_cmps = sorted(zip(candidate_companies, scores), key=lambda x: x[1], reverse=True)
        if len(sorted_cmps): return sorted_cmps[0][0]
        return context