File size: 25,623 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
import os
import math
import tqdm
import logging
import argparse
import itertools
import PIL.Image
import numpy as np
from PIL import Image
import safetensors.torch
from datetime import datetime
from typing import Union, List
from spandrel import ModelLoader

import torch
import torch.nn.functional as F
from diffusers.utils import export_to_video

logger = logging.getLogger(__file__)
def get_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script for ConsisID.")

    # ConsisID information
    parser.add_argument("--train_type", choices=['t2v', 'i2v'], help="t2v or i2v")
    parser.add_argument("--is_train_face", action='store_true')
    parser.add_argument("--is_diff_lr", action='store_true')
    parser.add_argument("--is_train_lora", action='store_true')
    parser.add_argument("--is_kps", action='store_true')
    parser.add_argument("--is_shuffle_data", action='store_true')
    parser.add_argument("--enable_mask_loss", action='store_true')
    parser.add_argument("--is_single_face", action='store_true')
    parser.add_argument("--is_cross_face", action='store_true')
    parser.add_argument("--is_align_face", action='store_true')
    parser.add_argument("--is_reserve_face", action='store_true')
    parser.add_argument("--is_accelerator_state_dict", action='store_true')
    parser.add_argument("--is_validation", action='store_true')
    parser.add_argument("--config_path", type=str, default=None)
    parser.add_argument("--mask_path", type=str, default=None)
    parser.add_argument("--pretrained_weight", type=str, default=None)
    parser.add_argument("--sample_stride", type=int, default=3, help=".")
    parser.add_argument("--skip_frames_start_percent", type=float, default=0.0, help=".")
    parser.add_argument("--skip_frames_end_percent", type=float, default=1.0, help=".")
    parser.add_argument("--miss_tolerance", type=int, default=6)
    parser.add_argument("--min_distance", type=int, default=3)
    parser.add_argument("--min_frames", type=int, default=1)
    parser.add_argument("--max_frames", type=int, default=5)
    parser.add_argument("--LFE_num_tokens", type=int, default=32)
    parser.add_argument("--LFE_output_dim", type=int, default=768)
    parser.add_argument("--LFE_heads", type=int, default=12)
    parser.add_argument("--cross_attn_interval", type=int, default=1)

    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )

    # Model information
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )

    # Dataset information
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--instance_data_root",
        type=str,
        default=None,
        help=("A folder containing the training data."),
    )
    parser.add_argument(
        "--video_column",
        type=str,
        default="video",
        help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.",
    )
    parser.add_argument(
        "--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )

    # Validation
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
    )
    parser.add_argument(
        "--validation_images",
        type=str,
        default=None,
        help="One or more image path(s) that is used during validation to verify that the model is learning. Multiple validation paths should be separated by the '--validation_prompt_seperator' string. These should correspond to the order of the validation prompts.",
    )
    parser.add_argument(
        "--validation_prompt_separator",
        type=str,
        default=":::",
        help="String that separates multiple validation prompts",
    )
    parser.add_argument(
        "--num_validation_videos",
        type=int,
        default=1,
        help="Number of videos that should be generated during validation per `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`."
        ),
    )
    parser.add_argument(
        "--low_vram", action="store_true", help="Whether enable low_vram mode."
    )
    parser.add_argument(
        "--guidance_scale",
        type=float,
        default=6,
        help="The guidance scale to use while sampling validation videos.",
    )
    parser.add_argument(
        "--use_dynamic_cfg",
        action="store_true",
        default=False,
        help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.",
    )

    # Training information
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--rank",
        type=int,
        default=128,
        help=("The dimension of the LoRA update matrices."),
    )
    parser.add_argument(
        "--lora_alpha",
        type=float,
        default=128,
        help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="cogvideox-i2v-lora",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--height",
        type=int,
        default=480,
        help="All input videos are resized to this height.",
    )
    parser.add_argument(
        "--width",
        type=int,
        default=720,
        help="All input videos are resized to this width.",
    )
    parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
    parser.add_argument(
        "--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames."
    )
    parser.add_argument(
        "--skip_frames_start",
        type=int,
        default=0,
        help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.",
    )
    parser.add_argument(
        "--skip_frames_end",
        type=int,
        default=0,
        help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.",
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip videos horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=3e-5,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine_with_restarts",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--enable_slicing",
        action="store_true",
        default=False,
        help="Whether or not to use VAE slicing for saving memory.",
    )
    parser.add_argument(
        "--enable_tiling",
        action="store_true",
        default=False,
        help="Whether or not to use VAE tiling for saving memory.",
    )
    parser.add_argument(
        "--noised_image_dropout",
        type=float,
        default=0.05,
        help="Image condition dropout probability.",
    )

    # Optimizer
    parser.add_argument(
        "--optimizer",
        type=lambda s: s.lower(),
        default="adam",
        choices=["adam", "adamw", "prodigy"],
        help=("The optimizer type to use."),
    )
    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )
    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
    )
    parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.")
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        action="store_true",
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.",
    )

    # Other information
    parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help="Directory where logs are stored.",
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default=None,
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        '--trainable_modules', 
        nargs='+', 
        help='Enter a list of trainable modules'
    )
    parser.add_argument("--nccl_timeout", type=int, default=600, help="NCCL backend timeout in seconds.")

    return parser.parse_args()

def resize_mask(mask, latent, process_first_frame_only=True):
    latent_size = latent.size()

    if process_first_frame_only:
        target_size = list(latent_size[2:])
        target_size[0] = 1
        first_frame_resized = F.interpolate(
            mask[:, :, 0:1, :, :],
            size=target_size,
            mode='trilinear',
            align_corners=False
        )
        
        target_size = list(latent_size[2:])
        target_size[0] = target_size[0] - 1
        if target_size[0] != 0:
            remaining_frames_resized = F.interpolate(
                mask[:, :, 1:, :, :],
                size=target_size,
                mode='trilinear',
                align_corners=False
            )
            resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
        else:
            resized_mask = first_frame_resized
    else:
        target_size = list(latent_size[2:])
        resized_mask = F.interpolate(
            mask,
            size=target_size,
            mode='trilinear',
            align_corners=False
        )
    return resized_mask

def save_tensor_as_image(tensor, file_path):
    """
    Saves a PyTorch tensor as an image file.

    Args:
        tensor (torch.Tensor): The image tensor to save.
        file_path (str): Path to save the image file.
    """
    # Ensure the tensor is in CPU memory and detach it from the computation graph
    tensor = tensor.cpu().detach()
    
    # Convert from PyTorch to NumPy format, and handle the scaling from [0, 1] to [0, 255]
    tensor = tensor.squeeze()  # Remove unnecessary dimensions if any
    tensor = tensor.permute(1, 2, 0)  # Change from (C, H, W) to (H, W, C)
    tensor = tensor.numpy() * 255  # Scale from [0, 1] to [0, 255]
    tensor = tensor.astype(np.uint8)  # Convert to uint8
    
    # Convert the NumPy array to a PIL Image and save it
    image = Image.fromarray(tensor)
    image.save(file_path)

def pixel_values_to_pil(pixel_values, frame_index=0):
    if pixel_values.is_cuda:
        pixel_values = pixel_values.clone().cpu()
    pixel_values = (pixel_values + 1.0) / 2.0 * 255.0
    pixel_values = pixel_values.clamp(0, 255).byte()
    frame = pixel_values[frame_index]  # [C, H, W]
    frame = frame.permute(1, 2, 0)  # [H, W, C]
    frame_np = frame.numpy()
    image = Image.fromarray(frame_np)
    return image

def load_torch_file(ckpt, device=None, dtype=torch.float16):
    if device is None:
        device = torch.device("cpu")
    if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
        sd = safetensors.torch.load_file(ckpt, device=device.type)
    else:
        if not "weights_only" in torch.load.__code__.co_varnames:
            logger.warning(
                "Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely."
            )

        pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
        if "global_step" in pl_sd:
            logger.debug(f"Global Step: {pl_sd['global_step']}")
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        elif "params_ema" in pl_sd:
            sd = pl_sd["params_ema"]
        else:
            sd = pl_sd

    sd = {k: v.to(dtype) for k, v in sd.items()}
    return sd


def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
    for rp in replace_prefix:
        replace = list(
            map(
                lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp) :])),
                filter(lambda a: a.startswith(rp), state_dict.keys()),
            )
        )
        for x in replace:
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out


def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem


def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))


@torch.inference_mode()
def tiled_scale_multidim(
    samples, function, tile=(64, 64), overlap=8, upscale_amount=4, out_channels=3, output_device="cpu", pbar=None
):
    dims = len(tile)
    print(f"samples dtype:{samples.dtype}")
    output = torch.empty(
        [samples.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), samples.shape[2:])),
        device=output_device,
    )

    for b in range(samples.shape[0]):
        s = samples[b : b + 1]
        out = torch.zeros(
            [s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
            device=output_device,
        )
        out_div = torch.zeros(
            [s.shape[0], out_channels] + list(map(lambda a: round(a * upscale_amount), s.shape[2:])),
            device=output_device,
        )

        for it in itertools.product(*map(lambda a: range(0, a[0], a[1] - overlap), zip(s.shape[2:], tile))):
            s_in = s
            upscaled = []

            for d in range(dims):
                pos = max(0, min(s.shape[d + 2] - overlap, it[d]))
                l = min(tile[d], s.shape[d + 2] - pos)
                s_in = s_in.narrow(d + 2, pos, l)
                upscaled.append(round(pos * upscale_amount))

            ps = function(s_in).to(output_device)
            mask = torch.ones_like(ps)
            feather = round(overlap * upscale_amount)
            for t in range(feather):
                for d in range(2, dims + 2):
                    m = mask.narrow(d, t, 1)
                    m *= (1.0 / feather) * (t + 1)
                    m = mask.narrow(d, mask.shape[d] - 1 - t, 1)
                    m *= (1.0 / feather) * (t + 1)

            o = out
            o_d = out_div
            for d in range(dims):
                o = o.narrow(d + 2, upscaled[d], mask.shape[d + 2])
                o_d = o_d.narrow(d + 2, upscaled[d], mask.shape[d + 2])

            o += ps * mask
            o_d += mask

            if pbar is not None:
                pbar.update(1)

        output[b : b + 1] = out / out_div
    return output


def tiled_scale(
    samples,
    function,
    tile_x=64,
    tile_y=64,
    overlap=8,
    upscale_amount=4,
    out_channels=3,
    output_device="cpu",
    pbar=None,
):
    return tiled_scale_multidim(
        samples, function, (tile_y, tile_x), overlap, upscale_amount, out_channels, output_device, pbar
    )


def load_sd_upscale(ckpt, inf_device):
    sd = load_torch_file(ckpt, device=inf_device)
    if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
        sd = state_dict_prefix_replace(sd, {"module.": ""})
    out = ModelLoader().load_from_state_dict(sd).half()
    return out


def upscale(upscale_model, tensor: torch.Tensor, inf_device, output_device="cpu") -> torch.Tensor:
    memory_required = module_size(upscale_model.model)
    memory_required += (
        (512 * 512 * 3) * tensor.element_size() * max(upscale_model.scale, 1.0) * 384.0
    )  # The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
    memory_required += tensor.nelement() * tensor.element_size()
    print(f"UPScaleMemory required: {memory_required / 1024 / 1024 / 1024} GB")

    upscale_model.to(inf_device)
    tile = 512
    overlap = 32

    steps = tensor.shape[0] * get_tiled_scale_steps(
        tensor.shape[3], tensor.shape[2], tile_x=tile, tile_y=tile, overlap=overlap
    )

    pbar = ProgressBar(steps, desc="Tiling and Upscaling")

    s = tiled_scale(
        samples=tensor.to(torch.float16),
        function=lambda a: upscale_model(a),
        tile_x=tile,
        tile_y=tile,
        overlap=overlap,
        upscale_amount=upscale_model.scale,
        pbar=pbar,
    )

    upscale_model.to(output_device)
    return s


def upscale_batch_and_concatenate(upscale_model, latents, inf_device, output_device="cpu") -> torch.Tensor:
    upscaled_latents = []
    for i in range(latents.size(0)):
        latent = latents[i]
        upscaled_latent = upscale(upscale_model, latent, inf_device, output_device)
        upscaled_latents.append(upscaled_latent)
    return torch.stack(upscaled_latents)


def save_video(tensor: Union[List[np.ndarray], List[PIL.Image.Image]], fps: int = 8):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    video_path = f"./output/{timestamp}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    export_to_video(tensor, video_path, fps=fps)
    return video_path


class ProgressBar:
    def __init__(self, total, desc=None):
        self.total = total
        self.current = 0
        self.b_unit = tqdm.tqdm(total=total, desc="ProgressBar context index: 0" if desc is None else desc)

    def update(self, value):
        if value > self.total:
            value = self.total
        self.current = value
        if self.b_unit is not None:
            self.b_unit.set_description("ProgressBar context index: {}".format(self.current))
            self.b_unit.refresh()

            self.b_unit.update(self.current)