Spaces:
Runtime error
Runtime error
Commit
·
a7ebeb6
1
Parent(s):
6840ca3
final
Browse files- .gitignore +3 -0
- app.py +156 -0
- final.h5 +3 -0
- images/water_body_1011.jpg +0 -0
- images/water_body_11.jpg +0 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
.venv
|
3 |
+
.env
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.layers import (
|
5 |
+
Conv2D,
|
6 |
+
MaxPool2D,
|
7 |
+
Dropout,
|
8 |
+
Conv2DTranspose,
|
9 |
+
concatenate,
|
10 |
+
)
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
|
14 |
+
class EncoderBlock(tf.keras.layers.Layer):
|
15 |
+
def __init__(self, filters, rate=None, pooling=True, **kwargs):
|
16 |
+
super(EncoderBlock, self).__init__(**kwargs)
|
17 |
+
self.filters = filters
|
18 |
+
self.rate = rate
|
19 |
+
self.pooling = pooling
|
20 |
+
self.conv1 = Conv2D(
|
21 |
+
self.filters,
|
22 |
+
kernel_size=3,
|
23 |
+
strides=1,
|
24 |
+
padding="same",
|
25 |
+
activation="relu",
|
26 |
+
kernel_initializer="he_normal",
|
27 |
+
)
|
28 |
+
self.conv2 = Conv2D(
|
29 |
+
self.filters,
|
30 |
+
kernel_size=3,
|
31 |
+
strides=1,
|
32 |
+
padding="same",
|
33 |
+
activation="relu",
|
34 |
+
kernel_initializer="he_normal",
|
35 |
+
)
|
36 |
+
if self.pooling:
|
37 |
+
self.pool = MaxPool2D(pool_size=(2, 2))
|
38 |
+
if self.rate is not None:
|
39 |
+
self.drop = Dropout(rate)
|
40 |
+
|
41 |
+
def call(self, inputs):
|
42 |
+
x = self.conv1(inputs)
|
43 |
+
if self.rate is not None:
|
44 |
+
x = self.drop(x)
|
45 |
+
x = self.conv2(x)
|
46 |
+
if self.pooling:
|
47 |
+
y = self.pool(x)
|
48 |
+
return y, x
|
49 |
+
else:
|
50 |
+
return x
|
51 |
+
|
52 |
+
def get_config(self):
|
53 |
+
base_config = super().get_config()
|
54 |
+
return {
|
55 |
+
**base_config,
|
56 |
+
"filters": self.filters,
|
57 |
+
"rate": self.rate,
|
58 |
+
"pooling": self.pooling,
|
59 |
+
}
|
60 |
+
|
61 |
+
|
62 |
+
class DecoderBlock(tf.keras.layers.Layer):
|
63 |
+
def __init__(self, filters, rate=None, axis=-1, **kwargs):
|
64 |
+
super(DecoderBlock, self).__init__(**kwargs)
|
65 |
+
self.filters = filters
|
66 |
+
self.rate = rate
|
67 |
+
self.axis = axis
|
68 |
+
self.convT = Conv2DTranspose(
|
69 |
+
self.filters, kernel_size=3, strides=2, padding="same"
|
70 |
+
)
|
71 |
+
self.conv1 = Conv2D(
|
72 |
+
self.filters,
|
73 |
+
kernel_size=3,
|
74 |
+
activation="relu",
|
75 |
+
kernel_initializer="he_normal",
|
76 |
+
padding="same",
|
77 |
+
)
|
78 |
+
if rate is not None:
|
79 |
+
self.drop = Dropout(self.rate)
|
80 |
+
self.conv2 = Conv2D(
|
81 |
+
self.filters,
|
82 |
+
kernel_size=3,
|
83 |
+
activation="relu",
|
84 |
+
kernel_initializer="he_normal",
|
85 |
+
padding="same",
|
86 |
+
)
|
87 |
+
|
88 |
+
def call(self, inputs):
|
89 |
+
X, short_X = inputs
|
90 |
+
ct = self.convT(X)
|
91 |
+
c_ = concatenate([ct, short_X], axis=self.axis)
|
92 |
+
x = self.conv1(c_)
|
93 |
+
if self.rate is not None:
|
94 |
+
x = self.drop(x)
|
95 |
+
y = self.conv2(x)
|
96 |
+
return y
|
97 |
+
|
98 |
+
def get_config(self):
|
99 |
+
base_config = super().get_config()
|
100 |
+
return {
|
101 |
+
**base_config,
|
102 |
+
"filters": self.filters,
|
103 |
+
"rate": self.rate,
|
104 |
+
"axis": self.axis,
|
105 |
+
}
|
106 |
+
|
107 |
+
|
108 |
+
# Load the model with custom layers
|
109 |
+
unet = tf.keras.models.load_model(
|
110 |
+
"final.h5",
|
111 |
+
custom_objects={
|
112 |
+
"EncoderBlock": EncoderBlock,
|
113 |
+
"DecoderBlock": DecoderBlock,
|
114 |
+
},
|
115 |
+
)
|
116 |
+
|
117 |
+
|
118 |
+
def show_image(image, cmap=None, title=None):
|
119 |
+
plt.imshow(image, cmap=cmap)
|
120 |
+
if title is not None:
|
121 |
+
plt.title(title)
|
122 |
+
plt.axis("off")
|
123 |
+
|
124 |
+
|
125 |
+
def predict(image):
|
126 |
+
real_img = tf.image.resize(image, [128, 128])
|
127 |
+
real_img = real_img / 255.0
|
128 |
+
real_img = np.expand_dims(real_img, axis=0)
|
129 |
+
pred_mask = unet.predict(real_img).reshape(128, 128)
|
130 |
+
real_img = real_img[0]
|
131 |
+
|
132 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
133 |
+
|
134 |
+
ax[0].imshow(real_img)
|
135 |
+
ax[0].set_title("Original Image")
|
136 |
+
ax[0].axis("off")
|
137 |
+
|
138 |
+
ax[1].imshow(pred_mask, cmap="gray")
|
139 |
+
ax[1].set_title("Predicted Mask")
|
140 |
+
ax[1].axis("off")
|
141 |
+
|
142 |
+
plt.tight_layout()
|
143 |
+
plt.show()
|
144 |
+
return pred_mask
|
145 |
+
|
146 |
+
|
147 |
+
# Create Gradio interface
|
148 |
+
iface = gr.Interface(
|
149 |
+
fn=predict,
|
150 |
+
inputs=gr.Image(type="numpy"),
|
151 |
+
outputs=gr.Image(type="numpy"),
|
152 |
+
examples=["./images/water_body_11.jpg", "./images/water_body_1011.jpg"],
|
153 |
+
title="Water Body Segmentation",
|
154 |
+
)
|
155 |
+
|
156 |
+
iface.launch()
|
final.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61feb05325128544a666a846834378e647951bf67302579f307d76dc095d0368
|
3 |
+
size 26090856
|
images/water_body_1011.jpg
ADDED
![]() |
images/water_body_11.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow==2.9.0
|
2 |
+
gradio
|
3 |
+
numpy==1.22
|