import gradio as gr import tensorflow as tf import numpy as np from tensorflow.keras.layers import ( Conv2D, MaxPool2D, Dropout, Conv2DTranspose, concatenate, ) import matplotlib.pyplot as plt class EncoderBlock(tf.keras.layers.Layer): def __init__(self, filters, rate=None, pooling=True, **kwargs): super(EncoderBlock, self).__init__(**kwargs) self.filters = filters self.rate = rate self.pooling = pooling self.conv1 = Conv2D( self.filters, kernel_size=3, strides=1, padding="same", activation="relu", kernel_initializer="he_normal", ) self.conv2 = Conv2D( self.filters, kernel_size=3, strides=1, padding="same", activation="relu", kernel_initializer="he_normal", ) if self.pooling: self.pool = MaxPool2D(pool_size=(2, 2)) if self.rate is not None: self.drop = Dropout(rate) def call(self, inputs): x = self.conv1(inputs) if self.rate is not None: x = self.drop(x) x = self.conv2(x) if self.pooling: y = self.pool(x) return y, x else: return x def get_config(self): base_config = super().get_config() return { **base_config, "filters": self.filters, "rate": self.rate, "pooling": self.pooling, } class DecoderBlock(tf.keras.layers.Layer): def __init__(self, filters, rate=None, axis=-1, **kwargs): super(DecoderBlock, self).__init__(**kwargs) self.filters = filters self.rate = rate self.axis = axis self.convT = Conv2DTranspose( self.filters, kernel_size=3, strides=2, padding="same" ) self.conv1 = Conv2D( self.filters, kernel_size=3, activation="relu", kernel_initializer="he_normal", padding="same", ) if rate is not None: self.drop = Dropout(self.rate) self.conv2 = Conv2D( self.filters, kernel_size=3, activation="relu", kernel_initializer="he_normal", padding="same", ) def call(self, inputs): X, short_X = inputs ct = self.convT(X) c_ = concatenate([ct, short_X], axis=self.axis) x = self.conv1(c_) if self.rate is not None: x = self.drop(x) y = self.conv2(x) return y def get_config(self): base_config = super().get_config() return { **base_config, "filters": self.filters, "rate": self.rate, "axis": self.axis, } # Load the model with custom layers unet = tf.keras.models.load_model( "final.h5", custom_objects={ "EncoderBlock": EncoderBlock, "DecoderBlock": DecoderBlock, }, ) def show_image(image, cmap=None, title=None): plt.imshow(image, cmap=cmap) if title is not None: plt.title(title) plt.axis("off") def predict(image): real_img = tf.image.resize(image, [128, 128]) real_img = real_img / 255.0 real_img = np.expand_dims(real_img, axis=0) pred_mask = unet.predict(real_img).reshape(128, 128) real_img = real_img[0] fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(real_img) ax[0].set_title("Original Image") ax[0].axis("off") ax[1].imshow(pred_mask, cmap="gray") ax[1].set_title("Predicted Mask") ax[1].axis("off") plt.tight_layout() plt.show() return pred_mask # Create Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), examples=["./images/water_body_11.jpg", "./images/water_body_1011.jpg"], title="Water Body Segmentation", ) iface.launch()