import torch from transformers import AutoTokenizer, AutoModelForMaskedLM, pipeline import random from nltk.corpus import stopwords import nltk from vocabulary_split import split_vocabulary, filter_logits # Load tokenizer and model for masked language model tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) # Get permissible vocabulary permissible, _ = split_vocabulary(seed=42) permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) # Initialize stop words and ensure NLTK resources are downloaded stop_words = set(stopwords.words('english')) nltk.download('averaged_perceptron_tagger', quiet=True) nltk.download('maxent_ne_chunker', quiet=True) nltk.download('words', quiet=True) def get_logits_for_mask(sentence): inputs = tokenizer(sentence, return_tensors="pt") mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits return logits[0, mask_token_index, :].squeeze() def mask_word(sentence, word): masked_sentence = sentence.replace(word, '[MASK]', 1) logits = get_logits_for_mask(masked_sentence) filtered_logits = filter_logits(logits, permissible_indices) words = [tokenizer.decode([i]) for i in filtered_logits.argsort()[-5:]] return masked_sentence, filtered_logits.tolist(), words def mask_non_stopword(sentence, pseudo_random=False): non_stop_words = [word for word in sentence.split() if word.lower() not in stop_words] if not non_stop_words: return sentence, None, None if pseudo_random: random.seed(10) # Fixed seed for pseudo-randomness word_to_mask = random.choice(non_stop_words) return mask_word(sentence, word_to_mask) def mask_between_lcs(sentence, lcs_points): words = sentence.split() masked_indices = [] # Mask first word before the first LCS point if lcs_points and lcs_points[0] > 0: idx = random.randint(0, lcs_points[0] - 1) words[idx] = '[MASK]' masked_indices.append(idx) # Mask between LCS points for i in range(len(lcs_points) - 1): start, end = lcs_points[i], lcs_points[i + 1] if end - start > 1: mask_index = random.randint(start + 1, end - 1) words[mask_index] = '[MASK]' masked_indices.append(mask_index) # Mask last word after the last LCS point if lcs_points and lcs_points[-1] < len(words) - 1: idx = random.randint(lcs_points[-1] + 1, len(words) - 1) words[idx] = '[MASK]' masked_indices.append(idx) masked_sentence = ' '.join(words) logits = get_logits_for_mask(masked_sentence) logits_list, top_words_list = [], [] for idx in masked_indices: filtered_logits = filter_logits(logits[idx], permissible_indices) logits_list.append(filtered_logits.tolist()) top_words = [tokenizer.decode([i]) for i in filtered_logits.topk(5).indices.tolist()] top_words_list.append(top_words) return masked_sentence, logits_list, top_words_list def high_entropy_words(sentence, non_melting_points): non_melting_words = {word.lower() for _, point in non_melting_points for word in point.split()} candidate_words = [word for word in sentence.split() if word.lower() not in stop_words and word.lower() not in non_melting_words] if not candidate_words: return sentence, None, None max_entropy, max_entropy_word, max_logits = -float('inf'), None, None for word in candidate_words: masked_sentence = sentence.replace(word, '[MASK]', 1) logits = get_logits_for_mask(masked_sentence) filtered_logits = filter_logits(logits, permissible_indices) # Calculate entropy probs = torch.softmax(filtered_logits, dim=-1) top_5_probs = probs.topk(5).values entropy = -torch.sum(top_5_probs * torch.log(top_5_probs + 1e-10)) # Avoid log(0) if entropy > max_entropy: max_entropy, max_entropy_word, max_logits = entropy, word, filtered_logits if max_entropy_word is None: return sentence, None, None masked_sentence = sentence.replace(max_entropy_word, '[MASK]', 1) words = [tokenizer.decode([i]) for i in max_logits.argsort()[-5:]] return masked_sentence, max_logits.tolist(), words def mask_by_pos(sentence, pos_to_mask=['NOUN', 'VERB', 'ADJ']): words = nltk.word_tokenize(sentence) pos_tags = nltk.pos_tag(words) maskable_words = [word for word, pos in pos_tags if pos[:2] in pos_to_mask] if not maskable_words: return sentence, None, None word_to_mask = random.choice(maskable_words) return mask_word(sentence, word_to_mask) def mask_named_entity(sentence): words = nltk.word_tokenize(sentence) pos_tags = nltk.pos_tag(words) named_entities = nltk.ne_chunk(pos_tags) maskable_words = [word for word, tag in named_entities.leaves() if isinstance(tag, nltk.Tree)] if not maskable_words: return sentence, None, None word_to_mask = random.choice(maskable_words) return mask_word(sentence, word_to_mask)