Spaces:
Sleeping
Sleeping
File size: 1,260 Bytes
2a5f9fb df66f6e 2a5f9fb 1ffc326 f982b8e 971bce4 1ffc326 2a5f9fb 971bce4 9833cdb 971bce4 9833cdb 971bce4 9833cdb 2a5f9fb 971bce4 4ff9eef 395eff6 971bce4 395eff6 1ffc326 2a5f9fb efeee6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import os
from huggingface_hub import HfApi
# Info to change for your repository
# ----------------------------------
# A read/write user access token for a user in the org
# You can create these at https://huggingface.co/settings/tokens
# This must be set as a 'Secret' in the leaderboard Space settings.
TOKEN = os.environ.get("TOKEN")
# Change to your org name
OWNER = "Bias-Leaderboard"
DEVICE = "cuda:0" # "cpu" or "cuda:0" if you add compute
LIMIT = 20 # !!!! Should be None for actual evaluations!!!
# ----------------------------------
# Define some input/output variables.
# Don't forget to create a results and requests Dataset for your org
# Leaderboard Space
REPO_ID = f"{OWNER}/leaderboard"
# Leaderboard input Dataset
QUEUE_REPO = f"{OWNER}/requests"
# Leaderboard output Dataset
RESULTS_REPO = f"{OWNER}/results"
# If you setup a cache, set HF_HOME.
CACHE_PATH=os.getenv("HF_HOME", ".")
# Local caches to read previously-submitted/computed results
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
API = HfApi(token=TOKEN)
|