Spaces:
Sleeping
Sleeping
Clémentine
commited on
Commit
•
460d762
1
Parent(s):
a7cba30
merge refactor
Browse files- .gitignore +2 -1
- app.py +107 -274
- src/assets/css_html_js.py +87 -0
- src/assets/hardcoded_evals.py +38 -0
- scale-hf-logo.png → src/assets/scale-hf-logo.png +0 -0
- content.py → src/assets/text_content.py +5 -1
- src/auto_leaderboard/get_model_metadata.py +54 -0
- utils.py → src/auto_leaderboard/load_results.py +23 -57
- elo_utils.py → src/elo_leaderboard/load_results.py +8 -31
- visualizations.py → src/elo_leaderboard/visualizations.py +1 -1
- src/init.py +73 -0
- src/utils_display.py +96 -0
.gitignore
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
|
2 |
venv/
|
3 |
__pycache__/
|
4 |
.env
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
|
|
7 |
|
8 |
gpt_4_evals/
|
9 |
human_evals/
|
|
|
1 |
+
auto_evals/
|
2 |
venv/
|
3 |
__pycache__/
|
4 |
.env
|
5 |
.ipynb_checkpoints
|
6 |
*ipynb
|
7 |
+
.vscode/
|
8 |
|
9 |
gpt_4_evals/
|
10 |
human_evals/
|
app.py
CHANGED
@@ -7,19 +7,25 @@ import gradio as gr
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
-
from huggingface_hub import HfApi
|
11 |
from transformers import AutoConfig
|
12 |
|
13 |
-
from
|
14 |
-
from
|
15 |
-
from
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# clone / pull the lmeh eval data
|
18 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
19 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
20 |
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval"
|
21 |
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals"
|
22 |
-
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC",
|
|
|
23 |
|
24 |
api = HfApi()
|
25 |
|
@@ -29,113 +35,25 @@ def restart_space():
|
|
29 |
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
|
30 |
)
|
31 |
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
file_names.extend([os.path.join(root, file) for file in files])
|
41 |
-
|
42 |
-
return set([file_name.lower().split("./evals/")[1] for file_name in file_names])
|
43 |
-
|
44 |
-
|
45 |
-
repo = None
|
46 |
-
requested_models = None
|
47 |
-
if H4_TOKEN:
|
48 |
-
print("Pulling evaluation requests and results.")
|
49 |
-
# try:
|
50 |
-
# shutil.rmtree("./evals/")
|
51 |
-
# except:
|
52 |
-
# pass
|
53 |
-
|
54 |
-
repo = Repository(
|
55 |
-
local_dir="./evals/",
|
56 |
-
clone_from=LMEH_REPO,
|
57 |
-
use_auth_token=H4_TOKEN,
|
58 |
-
repo_type="dataset",
|
59 |
-
)
|
60 |
-
repo.git_pull()
|
61 |
-
|
62 |
-
requested_models_dir = "./evals/eval_requests"
|
63 |
-
requested_models = get_all_requested_models(requested_models_dir)
|
64 |
-
|
65 |
-
human_eval_repo = None
|
66 |
-
if H4_TOKEN and not os.path.isdir("./human_evals"):
|
67 |
-
print("Pulling human evaluation repo")
|
68 |
-
human_eval_repo = Repository(
|
69 |
-
local_dir="./human_evals/",
|
70 |
-
clone_from=HUMAN_EVAL_REPO,
|
71 |
-
use_auth_token=H4_TOKEN,
|
72 |
-
repo_type="dataset",
|
73 |
-
)
|
74 |
-
human_eval_repo.git_pull()
|
75 |
-
|
76 |
-
gpt_4_eval_repo = None
|
77 |
-
if H4_TOKEN and not os.path.isdir("./gpt_4_evals"):
|
78 |
-
print("Pulling GPT-4 evaluation repo")
|
79 |
-
gpt_4_eval_repo = Repository(
|
80 |
-
local_dir="./gpt_4_evals/",
|
81 |
-
clone_from=GPT_4_EVAL_REPO,
|
82 |
-
use_auth_token=H4_TOKEN,
|
83 |
-
repo_type="dataset",
|
84 |
-
)
|
85 |
-
gpt_4_eval_repo.git_pull()
|
86 |
-
|
87 |
-
# parse the results
|
88 |
-
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
89 |
-
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
90 |
-
|
91 |
-
|
92 |
-
def load_results(model, benchmark, metric):
|
93 |
-
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
|
94 |
-
if not os.path.exists(file_path):
|
95 |
-
return 0.0, None
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
accs = np.array([v[metric] for k, v in data["results"].items()])
|
100 |
-
mean_acc = np.mean(accs)
|
101 |
-
return mean_acc, data["config"]["model_args"]
|
102 |
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"Average ⬆️",
|
108 |
-
"ARC (25-shot) ⬆️",
|
109 |
-
"HellaSwag (10-shot) ⬆️",
|
110 |
-
"MMLU (5-shot) ⬆️",
|
111 |
-
"TruthfulQA (0-shot) ⬆️",
|
112 |
-
"model_name_for_query", # dummy column to implement search bar (hidden by custom CSS)
|
113 |
-
]
|
114 |
-
TYPES = ["markdown", "str", "number", "number", "number", "number", "number", "str"]
|
115 |
-
|
116 |
-
if not IS_PUBLIC:
|
117 |
-
COLS.insert(2, "8bit")
|
118 |
-
TYPES.insert(2, "bool")
|
119 |
-
|
120 |
-
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
|
121 |
-
EVAL_TYPES = ["markdown", "str", "bool", "bool", "bool", "str"]
|
122 |
-
|
123 |
-
BENCHMARK_COLS = [
|
124 |
-
"ARC (25-shot) ⬆️",
|
125 |
-
"HellaSwag (10-shot) ⬆️",
|
126 |
-
"MMLU (5-shot) ⬆️",
|
127 |
-
"TruthfulQA (0-shot) ⬆️",
|
128 |
-
]
|
129 |
-
|
130 |
-
ELO_COLS = [
|
131 |
-
"Model",
|
132 |
-
"GPT-4 (all)",
|
133 |
-
"Human (all)",
|
134 |
-
"Human (instruct)",
|
135 |
-
"Human (code-instruct)",
|
136 |
-
]
|
137 |
-
ELO_TYPES = ["markdown", "number", "number", "number", "number"]
|
138 |
-
ELO_SORT_COL = "GPT-4 (all)"
|
139 |
|
140 |
|
141 |
def has_no_nan_values(df, columns):
|
@@ -147,54 +65,21 @@ def has_nan_values(df, columns):
|
|
147 |
|
148 |
|
149 |
def get_leaderboard_df():
|
150 |
-
if
|
151 |
print("Pulling evaluation results for the leaderboard.")
|
152 |
-
|
153 |
|
154 |
all_data = get_eval_results_dicts(IS_PUBLIC)
|
155 |
|
156 |
if not IS_PUBLIC:
|
157 |
-
gpt4_values = {
|
158 |
-
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt4</a>',
|
159 |
-
"Revision": "tech report",
|
160 |
-
"8bit": None,
|
161 |
-
"Average ⬆️": 84.3,
|
162 |
-
"ARC (25-shot) ⬆️": 96.3,
|
163 |
-
"HellaSwag (10-shot) ⬆️": 95.3,
|
164 |
-
"MMLU (5-shot) ⬆️": 86.4,
|
165 |
-
"TruthfulQA (0-shot) ⬆️": 59.0,
|
166 |
-
"model_name_for_query": "GPT-4",
|
167 |
-
}
|
168 |
all_data.append(gpt4_values)
|
169 |
-
gpt35_values = {
|
170 |
-
"Model": f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>',
|
171 |
-
"Revision": "tech report",
|
172 |
-
"8bit": None,
|
173 |
-
"Average ⬆️": 71.9,
|
174 |
-
"ARC (25-shot) ⬆️": 85.2,
|
175 |
-
"HellaSwag (10-shot) ⬆️": 85.5,
|
176 |
-
"MMLU (5-shot) ⬆️": 70.0,
|
177 |
-
"TruthfulQA (0-shot) ⬆️": 47.0,
|
178 |
-
"model_name_for_query": "GPT-3.5",
|
179 |
-
}
|
180 |
all_data.append(gpt35_values)
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
"Revision": "N/A",
|
185 |
-
"8bit": None,
|
186 |
-
"Average ⬆️": 25.0,
|
187 |
-
"ARC (25-shot) ⬆️": 25.0,
|
188 |
-
"HellaSwag (10-shot) ⬆️": 25.0,
|
189 |
-
"MMLU (5-shot) ⬆️": 25.0,
|
190 |
-
"TruthfulQA (0-shot) ⬆️": 25.0,
|
191 |
-
"model_name_for_query": "baseline",
|
192 |
-
}
|
193 |
-
|
194 |
-
all_data.append(base_line)
|
195 |
|
196 |
df = pd.DataFrame.from_records(all_data)
|
197 |
-
df = df.sort_values(by=[
|
198 |
df = df[COLS]
|
199 |
|
200 |
# filter out if any of the benchmarks have not been produced
|
@@ -203,20 +88,21 @@ def get_leaderboard_df():
|
|
203 |
|
204 |
|
205 |
def get_evaluation_queue_df():
|
206 |
-
|
|
|
207 |
print("Pulling changes for the evaluation queue.")
|
208 |
-
|
209 |
|
210 |
entries = [
|
211 |
entry
|
212 |
-
for entry in os.listdir("
|
213 |
if not entry.startswith(".")
|
214 |
]
|
215 |
all_evals = []
|
216 |
|
217 |
for entry in entries:
|
218 |
if ".json" in entry:
|
219 |
-
file_path = os.path.join("
|
220 |
with open(file_path) as fp:
|
221 |
data = json.load(fp)
|
222 |
|
@@ -229,11 +115,11 @@ def get_evaluation_queue_df():
|
|
229 |
# this is a folder
|
230 |
sub_entries = [
|
231 |
e
|
232 |
-
for e in os.listdir(f"
|
233 |
if not e.startswith(".")
|
234 |
]
|
235 |
for sub_entry in sub_entries:
|
236 |
-
file_path = os.path.join("
|
237 |
with open(file_path) as fp:
|
238 |
data = json.load(fp)
|
239 |
|
@@ -305,13 +191,15 @@ leaderboard_df = original_df.copy()
|
|
305 |
|
306 |
def is_model_on_hub(model_name, revision) -> bool:
|
307 |
try:
|
308 |
-
|
309 |
-
return True
|
|
|
|
|
|
|
310 |
|
311 |
except Exception as e:
|
312 |
-
print("Could not get the model config from the hub
|
313 |
-
|
314 |
-
return False
|
315 |
|
316 |
|
317 |
def add_new_eval(
|
@@ -327,14 +215,15 @@ def add_new_eval(
|
|
327 |
# check the model actually exists before adding the eval
|
328 |
if revision == "":
|
329 |
revision = "main"
|
330 |
-
if is_delta_weight and not is_model_on_hub(base_model, revision):
|
331 |
-
error_message = f'Base model "{base_model}" was not found on hub!'
|
332 |
-
print(error_message)
|
333 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error_message}</p>"
|
334 |
|
335 |
-
if
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
print("adding new eval")
|
340 |
|
@@ -355,14 +244,13 @@ def add_new_eval(
|
|
355 |
user_name = model.split("/")[0]
|
356 |
model_path = model.split("/")[1]
|
357 |
|
358 |
-
OUT_DIR = f"eval_requests/{user_name}"
|
359 |
os.makedirs(OUT_DIR, exist_ok=True)
|
360 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
|
361 |
|
362 |
# Check for duplicate submission
|
363 |
-
if out_path.lower() in requested_models:
|
364 |
-
|
365 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{duplicate_request_message}</p>"
|
366 |
|
367 |
with open(out_path, "w") as f:
|
368 |
f.write(json.dumps(eval_entry))
|
@@ -375,8 +263,7 @@ def add_new_eval(
|
|
375 |
repo_type="dataset",
|
376 |
)
|
377 |
|
378 |
-
|
379 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{success_message}</p>"
|
380 |
|
381 |
|
382 |
def refresh():
|
@@ -395,7 +282,7 @@ def refresh():
|
|
395 |
|
396 |
|
397 |
def search_table(df, query):
|
398 |
-
filtered_df = df[df[
|
399 |
return filtered_df
|
400 |
|
401 |
|
@@ -413,83 +300,6 @@ def change_tab(query_param):
|
|
413 |
return gr.Tabs.update(selected=0)
|
414 |
|
415 |
|
416 |
-
custom_css = """
|
417 |
-
#changelog-text {
|
418 |
-
font-size: 16px !important;
|
419 |
-
}
|
420 |
-
|
421 |
-
#changelog-text h2 {
|
422 |
-
font-size: 18px !important;
|
423 |
-
}
|
424 |
-
|
425 |
-
.markdown-text {
|
426 |
-
font-size: 16px !important;
|
427 |
-
}
|
428 |
-
|
429 |
-
#models-to-add-text {
|
430 |
-
font-size: 18px !important;
|
431 |
-
}
|
432 |
-
|
433 |
-
#citation-button span {
|
434 |
-
font-size: 16px !important;
|
435 |
-
}
|
436 |
-
|
437 |
-
#citation-button textarea {
|
438 |
-
font-size: 16px !important;
|
439 |
-
}
|
440 |
-
|
441 |
-
#citation-button > label > button {
|
442 |
-
margin: 6px;
|
443 |
-
transform: scale(1.3);
|
444 |
-
}
|
445 |
-
|
446 |
-
#leaderboard-table {
|
447 |
-
margin-top: 15px
|
448 |
-
}
|
449 |
-
|
450 |
-
#search-bar-table-box > div:first-child {
|
451 |
-
background: none;
|
452 |
-
border: none;
|
453 |
-
}
|
454 |
-
|
455 |
-
#search-bar {
|
456 |
-
padding: 0px;
|
457 |
-
width: 30%;
|
458 |
-
}
|
459 |
-
|
460 |
-
/* Hides the final column */
|
461 |
-
#llm-benchmark-tab-table table td:last-child,
|
462 |
-
#llm-benchmark-tab-table table th:last-child {
|
463 |
-
display: none;
|
464 |
-
}
|
465 |
-
|
466 |
-
/* Limit the width of the first column so that names don't expand too much */
|
467 |
-
table td:first-child,
|
468 |
-
table th:first-child {
|
469 |
-
max-width: 400px;
|
470 |
-
overflow: auto;
|
471 |
-
white-space: nowrap;
|
472 |
-
}
|
473 |
-
|
474 |
-
.tab-buttons button {
|
475 |
-
font-size: 20px;
|
476 |
-
}
|
477 |
-
|
478 |
-
#scale-logo {
|
479 |
-
border-style: none !important;
|
480 |
-
box-shadow: none;
|
481 |
-
display: block;
|
482 |
-
margin-left: auto;
|
483 |
-
margin-right: auto;
|
484 |
-
max-width: 600px;
|
485 |
-
}
|
486 |
-
|
487 |
-
#scale-logo .download {
|
488 |
-
display: none;
|
489 |
-
}
|
490 |
-
"""
|
491 |
-
|
492 |
-
|
493 |
demo = gr.Blocks(css=custom_css)
|
494 |
with demo:
|
495 |
gr.HTML(TITLE)
|
@@ -518,30 +328,52 @@ with demo:
|
|
518 |
show_label=False,
|
519 |
elem_id="search-bar",
|
520 |
)
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
531 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
532 |
value=original_df,
|
533 |
headers=COLS,
|
534 |
datatype=TYPES,
|
535 |
-
max_rows=
|
536 |
visible=False,
|
537 |
)
|
538 |
-
|
539 |
search_bar.submit(
|
540 |
search_table,
|
541 |
[hidden_leaderboard_table_for_search, search_bar],
|
542 |
leaderboard_table,
|
543 |
)
|
544 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
with gr.Row():
|
546 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
547 |
|
@@ -625,7 +457,7 @@ with demo:
|
|
625 |
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text")
|
626 |
with gr.Column(scale=1):
|
627 |
gr.Image(
|
628 |
-
"scale-hf-logo.png", elem_id="scale-logo", show_label=False
|
629 |
)
|
630 |
gr.Markdown("## No tie allowed")
|
631 |
elo_leaderboard_table = gr.components.Dataframe(
|
@@ -660,22 +492,23 @@ with demo:
|
|
660 |
tabs,
|
661 |
_js=get_window_url_params,
|
662 |
)
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
679 |
|
680 |
scheduler = BackgroundScheduler()
|
681 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
from huggingface_hub import HfApi
|
11 |
from transformers import AutoConfig
|
12 |
|
13 |
+
from src.auto_leaderboard.get_model_metadata import apply_metadata
|
14 |
+
from src.assets.text_content import *
|
15 |
+
from src.elo_leaderboard.load_results import get_elo_plots, get_elo_results_dicts
|
16 |
+
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
|
17 |
+
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
|
18 |
+
from src.assets.css_html_js import custom_css, get_window_url_params
|
19 |
+
from src.utils_display import AutoEvalColumn, EvalQueueColumn, EloEvalColumn, fields, styled_error, styled_warning, styled_message
|
20 |
+
from src.init import load_all_info_from_hub
|
21 |
|
22 |
# clone / pull the lmeh eval data
|
23 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
24 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
25 |
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval"
|
26 |
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals"
|
27 |
+
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
28 |
+
ADD_PLOTS = False
|
29 |
|
30 |
api = HfApi()
|
31 |
|
|
|
35 |
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
|
36 |
)
|
37 |
|
38 |
+
auto_eval_repo, human_eval_repo, gpt_4_eval_repo, requested_models = load_all_info_from_hub(LMEH_REPO, HUMAN_EVAL_REPO, GPT_4_EVAL_REPO)
|
39 |
|
40 |
+
COLS = [c.name for c in fields(AutoEvalColumn)]
|
41 |
+
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
42 |
+
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
43 |
+
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
44 |
|
45 |
+
if not IS_PUBLIC:
|
46 |
+
COLS.insert(2, AutoEvalColumn.is_8bit.name)
|
47 |
+
TYPES.insert(2, AutoEvalColumn.is_8bit.type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
50 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
|
|
|
|
51 |
|
52 |
+
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]
|
53 |
|
54 |
+
ELO_COLS = [c.name for c in fields(EloEvalColumn)]
|
55 |
+
ELO_TYPES = [c.type for c in fields(EloEvalColumn)]
|
56 |
+
ELO_SORT_COL = EloEvalColumn.gpt4.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
def has_no_nan_values(df, columns):
|
|
|
65 |
|
66 |
|
67 |
def get_leaderboard_df():
|
68 |
+
if auto_eval_repo:
|
69 |
print("Pulling evaluation results for the leaderboard.")
|
70 |
+
auto_eval_repo.git_pull()
|
71 |
|
72 |
all_data = get_eval_results_dicts(IS_PUBLIC)
|
73 |
|
74 |
if not IS_PUBLIC:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
all_data.append(gpt4_values)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
all_data.append(gpt35_values)
|
77 |
|
78 |
+
all_data.append(baseline)
|
79 |
+
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
df = pd.DataFrame.from_records(all_data)
|
82 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
83 |
df = df[COLS]
|
84 |
|
85 |
# filter out if any of the benchmarks have not been produced
|
|
|
88 |
|
89 |
|
90 |
def get_evaluation_queue_df():
|
91 |
+
# todo @saylortwift: replace the repo by the one you created for the eval queue
|
92 |
+
if auto_eval_repo:
|
93 |
print("Pulling changes for the evaluation queue.")
|
94 |
+
auto_eval_repo.git_pull()
|
95 |
|
96 |
entries = [
|
97 |
entry
|
98 |
+
for entry in os.listdir("auto_evals/eval_requests")
|
99 |
if not entry.startswith(".")
|
100 |
]
|
101 |
all_evals = []
|
102 |
|
103 |
for entry in entries:
|
104 |
if ".json" in entry:
|
105 |
+
file_path = os.path.join("auto_evals/eval_requests", entry)
|
106 |
with open(file_path) as fp:
|
107 |
data = json.load(fp)
|
108 |
|
|
|
115 |
# this is a folder
|
116 |
sub_entries = [
|
117 |
e
|
118 |
+
for e in os.listdir(f"auto_evals/eval_requests/{entry}")
|
119 |
if not e.startswith(".")
|
120 |
]
|
121 |
for sub_entry in sub_entries:
|
122 |
+
file_path = os.path.join("auto_evals/eval_requests", entry, sub_entry)
|
123 |
with open(file_path) as fp:
|
124 |
data = json.load(fp)
|
125 |
|
|
|
191 |
|
192 |
def is_model_on_hub(model_name, revision) -> bool:
|
193 |
try:
|
194 |
+
AutoConfig.from_pretrained(model_name, revision=revision)
|
195 |
+
return True, None
|
196 |
+
|
197 |
+
except ValueError as e:
|
198 |
+
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."
|
199 |
|
200 |
except Exception as e:
|
201 |
+
print("Could not get the model config from the hub.: \n", e)
|
202 |
+
return False, "was not found on hub!"
|
|
|
203 |
|
204 |
|
205 |
def add_new_eval(
|
|
|
215 |
# check the model actually exists before adding the eval
|
216 |
if revision == "":
|
217 |
revision = "main"
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
if is_delta_weight:
|
220 |
+
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
221 |
+
if not base_model_on_hub:
|
222 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
223 |
+
|
224 |
+
model_on_hub, error = is_model_on_hub(model, revision)
|
225 |
+
if not model_on_hub:
|
226 |
+
return styled_error(f'Model "{model}" {error}')
|
227 |
|
228 |
print("adding new eval")
|
229 |
|
|
|
244 |
user_name = model.split("/")[0]
|
245 |
model_path = model.split("/")[1]
|
246 |
|
247 |
+
OUT_DIR = f"auto_evals/eval_requests/{user_name}"
|
248 |
os.makedirs(OUT_DIR, exist_ok=True)
|
249 |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
|
250 |
|
251 |
# Check for duplicate submission
|
252 |
+
if out_path.split("eval_requests/")[1].lower() in requested_models:
|
253 |
+
return styled_warning("This model has been already submitted.")
|
|
|
254 |
|
255 |
with open(out_path, "w") as f:
|
256 |
f.write(json.dumps(eval_entry))
|
|
|
263 |
repo_type="dataset",
|
264 |
)
|
265 |
|
266 |
+
return styled_message("Your request has been submitted to the evaluation queue!")
|
|
|
267 |
|
268 |
|
269 |
def refresh():
|
|
|
282 |
|
283 |
|
284 |
def search_table(df, query):
|
285 |
+
filtered_df = df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)]
|
286 |
return filtered_df
|
287 |
|
288 |
|
|
|
300 |
return gr.Tabs.update(selected=0)
|
301 |
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
demo = gr.Blocks(css=custom_css)
|
304 |
with demo:
|
305 |
gr.HTML(TITLE)
|
|
|
328 |
show_label=False,
|
329 |
elem_id="search-bar",
|
330 |
)
|
331 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
332 |
+
with gr.TabItem("Light View"):
|
333 |
+
leaderboard_table_lite = gr.components.Dataframe(
|
334 |
+
value=leaderboard_df[COLS_LITE],
|
335 |
+
headers=COLS_LITE,
|
336 |
+
datatype=TYPES_LITE,
|
337 |
+
max_rows=None,
|
338 |
+
elem_id="leaderboard-table-lite",
|
339 |
+
)
|
340 |
+
with gr.TabItem("Extended Model View"):
|
341 |
+
leaderboard_table = gr.components.Dataframe(
|
342 |
+
value=leaderboard_df,
|
343 |
+
headers=COLS,
|
344 |
+
datatype=TYPES,
|
345 |
+
max_rows=None,
|
346 |
+
elem_id="leaderboard-table",
|
347 |
+
)
|
348 |
|
349 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
350 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
351 |
value=original_df,
|
352 |
headers=COLS,
|
353 |
datatype=TYPES,
|
354 |
+
max_rows=None,
|
355 |
visible=False,
|
356 |
)
|
|
|
357 |
search_bar.submit(
|
358 |
search_table,
|
359 |
[hidden_leaderboard_table_for_search, search_bar],
|
360 |
leaderboard_table,
|
361 |
)
|
362 |
|
363 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
364 |
+
hidden_leaderboard_table_for_search_lite = gr.components.Dataframe(
|
365 |
+
value=original_df[COLS_LITE],
|
366 |
+
headers=COLS_LITE,
|
367 |
+
datatype=TYPES_LITE,
|
368 |
+
max_rows=None,
|
369 |
+
visible=False,
|
370 |
+
)
|
371 |
+
search_bar.submit(
|
372 |
+
search_table,
|
373 |
+
[hidden_leaderboard_table_for_search_lite, search_bar],
|
374 |
+
leaderboard_table_lite,
|
375 |
+
)
|
376 |
+
|
377 |
with gr.Row():
|
378 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
379 |
|
|
|
457 |
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text")
|
458 |
with gr.Column(scale=1):
|
459 |
gr.Image(
|
460 |
+
"src/assets/scale-hf-logo.png", elem_id="scale-logo", show_label=False
|
461 |
)
|
462 |
gr.Markdown("## No tie allowed")
|
463 |
elo_leaderboard_table = gr.components.Dataframe(
|
|
|
492 |
tabs,
|
493 |
_js=get_window_url_params,
|
494 |
)
|
495 |
+
if ADD_PLOTS:
|
496 |
+
with gr.Box():
|
497 |
+
visualization_title = gr.HTML(VISUALIZATION_TITLE)
|
498 |
+
with gr.Row():
|
499 |
+
with gr.Column():
|
500 |
+
gr.Markdown(f"#### Figure 1: {PLOT_1_TITLE}")
|
501 |
+
plot_1 = gr.Plot(plot_1, show_label=False)
|
502 |
+
with gr.Column():
|
503 |
+
gr.Markdown(f"#### Figure 2: {PLOT_2_TITLE}")
|
504 |
+
plot_2 = gr.Plot(plot_2, show_label=False)
|
505 |
+
with gr.Row():
|
506 |
+
with gr.Column():
|
507 |
+
gr.Markdown(f"#### Figure 3: {PLOT_3_TITLE}")
|
508 |
+
plot_3 = gr.Plot(plot_3, show_label=False)
|
509 |
+
with gr.Column():
|
510 |
+
gr.Markdown(f"#### Figure 4: {PLOT_4_TITLE}")
|
511 |
+
plot_4 = gr.Plot(plot_4, show_label=False)
|
512 |
|
513 |
scheduler = BackgroundScheduler()
|
514 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
src/assets/css_html_js.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
#changelog-text {
|
3 |
+
font-size: 16px !important;
|
4 |
+
}
|
5 |
+
|
6 |
+
#changelog-text h2 {
|
7 |
+
font-size: 18px !important;
|
8 |
+
}
|
9 |
+
|
10 |
+
.markdown-text {
|
11 |
+
font-size: 16px !important;
|
12 |
+
}
|
13 |
+
|
14 |
+
#models-to-add-text {
|
15 |
+
font-size: 18px !important;
|
16 |
+
}
|
17 |
+
|
18 |
+
#citation-button span {
|
19 |
+
font-size: 16px !important;
|
20 |
+
}
|
21 |
+
|
22 |
+
#citation-button textarea {
|
23 |
+
font-size: 16px !important;
|
24 |
+
}
|
25 |
+
|
26 |
+
#citation-button > label > button {
|
27 |
+
margin: 6px;
|
28 |
+
transform: scale(1.3);
|
29 |
+
}
|
30 |
+
|
31 |
+
#leaderboard-table {
|
32 |
+
margin-top: 15px
|
33 |
+
}
|
34 |
+
|
35 |
+
#leaderboard-table-lite {
|
36 |
+
margin-top: 15px
|
37 |
+
}
|
38 |
+
|
39 |
+
#search-bar-table-box > div:first-child {
|
40 |
+
background: none;
|
41 |
+
border: none;
|
42 |
+
}
|
43 |
+
|
44 |
+
#search-bar {
|
45 |
+
padding: 0px;
|
46 |
+
width: 30%;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Hides the final AutoEvalColumn */
|
50 |
+
#llm-benchmark-tab-table table td:last-child,
|
51 |
+
#llm-benchmark-tab-table table th:last-child {
|
52 |
+
display: none;
|
53 |
+
}
|
54 |
+
|
55 |
+
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
56 |
+
table td:first-child,
|
57 |
+
table th:first-child {
|
58 |
+
max-width: 400px;
|
59 |
+
overflow: auto;
|
60 |
+
white-space: nowrap;
|
61 |
+
}
|
62 |
+
|
63 |
+
.tab-buttons button {
|
64 |
+
font-size: 20px;
|
65 |
+
}
|
66 |
+
|
67 |
+
#scale-logo {
|
68 |
+
border-style: none !important;
|
69 |
+
box-shadow: none;
|
70 |
+
display: block;
|
71 |
+
margin-left: auto;
|
72 |
+
margin-right: auto;
|
73 |
+
max-width: 600px;
|
74 |
+
}
|
75 |
+
|
76 |
+
#scale-logo .download {
|
77 |
+
display: none;
|
78 |
+
}
|
79 |
+
"""
|
80 |
+
|
81 |
+
get_window_url_params = """
|
82 |
+
function(url_params) {
|
83 |
+
const params = new URLSearchParams(window.location.search);
|
84 |
+
url_params = Object.fromEntries(params);
|
85 |
+
return url_params;
|
86 |
+
}
|
87 |
+
"""
|
src/assets/hardcoded_evals.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.utils_display import AutoEvalColumn, model_hyperlink
|
2 |
+
|
3 |
+
gpt4_values = {
|
4 |
+
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt4"),
|
5 |
+
AutoEvalColumn.revision.name: "tech report",
|
6 |
+
AutoEvalColumn.is_8bit.name: None,
|
7 |
+
AutoEvalColumn.average.name: 84.3,
|
8 |
+
AutoEvalColumn.arc.name: 96.3,
|
9 |
+
AutoEvalColumn.hellaswag.name: 95.3,
|
10 |
+
AutoEvalColumn.mmlu.name: 86.4,
|
11 |
+
AutoEvalColumn.truthfulqa.name: 59.0,
|
12 |
+
AutoEvalColumn.dummy.name: "GPT-4",
|
13 |
+
}
|
14 |
+
|
15 |
+
gpt35_values = {
|
16 |
+
AutoEvalColumn.model.name: model_hyperlink("https://arxiv.org/abs/2303.08774", "gpt3.5"),
|
17 |
+
AutoEvalColumn.revision.name: "tech report",
|
18 |
+
AutoEvalColumn.is_8bit.name: None,
|
19 |
+
AutoEvalColumn.average.name: 71.9,
|
20 |
+
AutoEvalColumn.arc.name: 85.2,
|
21 |
+
AutoEvalColumn.hellaswag.name: 85.5,
|
22 |
+
AutoEvalColumn.mmlu.name: 70.0,
|
23 |
+
AutoEvalColumn.truthfulqa.name: 47.0,
|
24 |
+
AutoEvalColumn.dummy.name: "GPT-3.5",
|
25 |
+
}
|
26 |
+
|
27 |
+
baseline = {
|
28 |
+
AutoEvalColumn.model.name: "<p>Baseline</p>",
|
29 |
+
AutoEvalColumn.revision.name: "N/A",
|
30 |
+
AutoEvalColumn.is_8bit.name: None,
|
31 |
+
AutoEvalColumn.average.name: 25.0,
|
32 |
+
AutoEvalColumn.arc.name: 25.0,
|
33 |
+
AutoEvalColumn.hellaswag.name: 25.0,
|
34 |
+
AutoEvalColumn.mmlu.name: 25.0,
|
35 |
+
AutoEvalColumn.truthfulqa.name: 25.0,
|
36 |
+
AutoEvalColumn.dummy.name: "baseline",
|
37 |
+
}
|
38 |
+
|
scale-hf-logo.png → src/assets/scale-hf-logo.png
RENAMED
File without changes
|
content.py → src/assets/text_content.py
RENAMED
@@ -1,4 +1,8 @@
|
|
1 |
CHANGELOG_TEXT = f"""
|
|
|
|
|
|
|
|
|
2 |
## [2023-06-13]
|
3 |
- Adjust description for TruthfulQA
|
4 |
|
@@ -13,7 +17,7 @@ CHANGELOG_TEXT = f"""
|
|
13 |
- Add a typeahead search bar
|
14 |
- Use webhooks to automatically spawn a new Space when someone opens a PR
|
15 |
- Start recording `submitted_time` for eval requests
|
16 |
-
- Limit
|
17 |
|
18 |
## [2023-05-30]
|
19 |
- Add a citation button
|
|
|
1 |
CHANGELOG_TEXT = f"""
|
2 |
+
## [2023-06-16]
|
3 |
+
- Refactored code base
|
4 |
+
- Added new columns: number of parameters, hub likes, license
|
5 |
+
|
6 |
## [2023-06-13]
|
7 |
- Adjust description for TruthfulQA
|
8 |
|
|
|
17 |
- Add a typeahead search bar
|
18 |
- Use webhooks to automatically spawn a new Space when someone opens a PR
|
19 |
- Start recording `submitted_time` for eval requests
|
20 |
+
- Limit AutoEvalColumn max-width
|
21 |
|
22 |
## [2023-05-30]
|
23 |
- Add a citation button
|
src/auto_leaderboard/get_model_metadata.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from src.utils_display import AutoEvalColumn
|
5 |
+
|
6 |
+
from huggingface_hub import HfApi
|
7 |
+
import huggingface_hub
|
8 |
+
api = HfApi()
|
9 |
+
|
10 |
+
|
11 |
+
def get_model_infos_from_hub(leaderboard_data: List[dict]):
|
12 |
+
for model_data in leaderboard_data:
|
13 |
+
model_name = model_data["model_name_for_query"]
|
14 |
+
try:
|
15 |
+
model_info = api.model_info(model_name)
|
16 |
+
except huggingface_hub.utils._errors.RepositoryNotFoundError:
|
17 |
+
model_data[AutoEvalColumn.license.name] = None
|
18 |
+
model_data[AutoEvalColumn.likes.name] = None
|
19 |
+
model_data[AutoEvalColumn.params.name] = None
|
20 |
+
continue
|
21 |
+
|
22 |
+
model_data[AutoEvalColumn.license.name] = get_model_license(model_info)
|
23 |
+
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info)
|
24 |
+
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info)
|
25 |
+
|
26 |
+
|
27 |
+
def get_model_license(model_info):
|
28 |
+
try:
|
29 |
+
return model_info.cardData["license"]
|
30 |
+
except Exception:
|
31 |
+
return None
|
32 |
+
|
33 |
+
def get_model_likes(model_info):
|
34 |
+
return model_info.likes
|
35 |
+
|
36 |
+
size_pattern = re.compile(r"\d+(b|m)")
|
37 |
+
|
38 |
+
def get_model_size(model_name, model_info):
|
39 |
+
# In billions
|
40 |
+
try:
|
41 |
+
return model_info.safetensors["total"] / 1e9
|
42 |
+
except AttributeError:
|
43 |
+
#print(f"Repository {model_id} does not have safetensors weights")
|
44 |
+
pass
|
45 |
+
try:
|
46 |
+
size_match = re.search(size_pattern, model_name.lower())
|
47 |
+
size = size_match.group(0)
|
48 |
+
return int(size[:-1]) if size[-1] == "b" else int(size[:-1]) / 1e3
|
49 |
+
except AttributeError:
|
50 |
+
return None
|
51 |
+
|
52 |
+
|
53 |
+
def apply_metadata(leaderboard_data: List[dict]):
|
54 |
+
get_model_infos_from_hub(leaderboard_data)
|
utils.py → src/auto_leaderboard/load_results.py
RENAMED
@@ -1,47 +1,23 @@
|
|
|
|
|
|
1 |
import glob
|
2 |
import json
|
3 |
-
from dataclasses import dataclass
|
4 |
from typing import Dict, List, Tuple
|
5 |
|
|
|
6 |
import numpy as np
|
7 |
|
8 |
# clone / pull the lmeh eval data
|
9 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
10 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
11 |
BENCH_TO_NAME = {
|
12 |
-
"arc_challenge":
|
13 |
-
"hellaswag":
|
14 |
-
"hendrycks":
|
15 |
-
"truthfulqa_mc":
|
16 |
}
|
17 |
|
18 |
|
19 |
-
def make_clickable_model(model_name):
|
20 |
-
LLAMAS = [
|
21 |
-
"huggingface/llama-7b",
|
22 |
-
"huggingface/llama-13b",
|
23 |
-
"huggingface/llama-30b",
|
24 |
-
"huggingface/llama-65b",
|
25 |
-
]
|
26 |
-
if model_name in LLAMAS:
|
27 |
-
model = model_name.split("/")[1]
|
28 |
-
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
|
29 |
-
|
30 |
-
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
31 |
-
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
|
32 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
|
33 |
-
|
34 |
-
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
35 |
-
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
36 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
|
37 |
-
|
38 |
-
# remove user from model name
|
39 |
-
# model_name_show = ' '.join(model_name.split('/')[1:])
|
40 |
-
|
41 |
-
link = "https://huggingface.co/" + model_name
|
42 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
43 |
-
|
44 |
-
|
45 |
@dataclass
|
46 |
class EvalResult:
|
47 |
eval_name: str
|
@@ -58,12 +34,12 @@ class EvalResult:
|
|
58 |
base_model = f"{self.model}"
|
59 |
data_dict = {}
|
60 |
|
61 |
-
data_dict["eval_name"] = self.eval_name
|
62 |
-
data_dict[
|
63 |
-
data_dict[
|
64 |
-
data_dict[
|
65 |
-
data_dict[
|
66 |
-
data_dict[
|
67 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
68 |
)
|
69 |
|
@@ -88,17 +64,15 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
|
88 |
revision = path_split[-3]
|
89 |
if len(path_split) == 7:
|
90 |
# handles gpt2 type models that don't have an org
|
91 |
-
result_key = f"{
|
92 |
else:
|
93 |
-
result_key = (
|
94 |
-
f"{path_split[-5]}_{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
|
95 |
-
)
|
96 |
org = path_split[-5]
|
|
|
97 |
|
98 |
eval_result = None
|
99 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
100 |
if benchmark in json_filepath:
|
101 |
-
accs = np.array([v[metric] for
|
102 |
mean_acc = round(np.mean(accs) * 100.0, 1)
|
103 |
eval_result = EvalResult(
|
104 |
result_key, org, model, revision, is_8bit, {benchmark: mean_acc}
|
@@ -109,18 +83,19 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
|
|
109 |
|
110 |
def get_eval_results(is_public) -> List[EvalResult]:
|
111 |
json_filepaths = glob.glob(
|
112 |
-
"
|
113 |
)
|
114 |
if not is_public:
|
115 |
json_filepaths += glob.glob(
|
116 |
-
"
|
117 |
)
|
118 |
json_filepaths += glob.glob(
|
119 |
-
"
|
120 |
)
|
|
|
121 |
json_filepaths += glob.glob(
|
122 |
-
"
|
123 |
-
)
|
124 |
eval_results = {}
|
125 |
|
126 |
for json_filepath in json_filepaths:
|
@@ -130,7 +105,7 @@ def get_eval_results(is_public) -> List[EvalResult]:
|
|
130 |
else:
|
131 |
eval_results[result_key] = eval_result
|
132 |
|
133 |
-
eval_results = [v for
|
134 |
|
135 |
return eval_results
|
136 |
|
@@ -139,12 +114,3 @@ def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
|
139 |
eval_results = get_eval_results(is_public)
|
140 |
|
141 |
return [e.to_dict() for e in eval_results]
|
142 |
-
|
143 |
-
|
144 |
-
get_window_url_params = """
|
145 |
-
function(url_params) {
|
146 |
-
const params = new URLSearchParams(window.location.search);
|
147 |
-
url_params = Object.fromEntries(params);
|
148 |
-
return url_params;
|
149 |
-
}
|
150 |
-
"""
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
import glob
|
4 |
import json
|
|
|
5 |
from typing import Dict, List, Tuple
|
6 |
|
7 |
+
from src.utils_display import AutoEvalColumn, make_clickable_model
|
8 |
import numpy as np
|
9 |
|
10 |
# clone / pull the lmeh eval data
|
11 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
12 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
13 |
BENCH_TO_NAME = {
|
14 |
+
"arc_challenge": AutoEvalColumn.arc.name,
|
15 |
+
"hellaswag": AutoEvalColumn.hellaswag.name,
|
16 |
+
"hendrycks": AutoEvalColumn.mmlu.name,
|
17 |
+
"truthfulqa_mc": AutoEvalColumn.truthfulqa.name,
|
18 |
}
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@dataclass
|
22 |
class EvalResult:
|
23 |
eval_name: str
|
|
|
34 |
base_model = f"{self.model}"
|
35 |
data_dict = {}
|
36 |
|
37 |
+
data_dict["eval_name"] = self.eval_name # not a column, just a save name
|
38 |
+
data_dict[AutoEvalColumn.is_8bit.name] = self.is_8bit
|
39 |
+
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model)
|
40 |
+
data_dict[AutoEvalColumn.dummy.name] = base_model
|
41 |
+
data_dict[AutoEvalColumn.revision.name] = self.revision
|
42 |
+
data_dict[AutoEvalColumn.average.name] = round(
|
43 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
44 |
)
|
45 |
|
|
|
64 |
revision = path_split[-3]
|
65 |
if len(path_split) == 7:
|
66 |
# handles gpt2 type models that don't have an org
|
67 |
+
result_key = f"{model}_{revision}_{is_8bit}"
|
68 |
else:
|
|
|
|
|
|
|
69 |
org = path_split[-5]
|
70 |
+
result_key = f"{org}_{model}_{revision}_{is_8bit}"
|
71 |
|
72 |
eval_result = None
|
73 |
for benchmark, metric in zip(BENCHMARKS, METRICS):
|
74 |
if benchmark in json_filepath:
|
75 |
+
accs = np.array([v[metric] for v in data["results"].values()])
|
76 |
mean_acc = round(np.mean(accs) * 100.0, 1)
|
77 |
eval_result = EvalResult(
|
78 |
result_key, org, model, revision, is_8bit, {benchmark: mean_acc}
|
|
|
83 |
|
84 |
def get_eval_results(is_public) -> List[EvalResult]:
|
85 |
json_filepaths = glob.glob(
|
86 |
+
"auto_evals/eval_results/public/**/16bit/*.json", recursive=True
|
87 |
)
|
88 |
if not is_public:
|
89 |
json_filepaths += glob.glob(
|
90 |
+
"auto_evals/eval_results/private/**/*.json", recursive=True
|
91 |
)
|
92 |
json_filepaths += glob.glob(
|
93 |
+
"auto_evals/eval_results/private/**/*.json", recursive=True
|
94 |
)
|
95 |
+
# include the 8bit evals of public models
|
96 |
json_filepaths += glob.glob(
|
97 |
+
"auto_evals/eval_results/public/**/8bit/*.json", recursive=True
|
98 |
+
)
|
99 |
eval_results = {}
|
100 |
|
101 |
for json_filepath in json_filepaths:
|
|
|
105 |
else:
|
106 |
eval_results[result_key] = eval_result
|
107 |
|
108 |
+
eval_results = [v for v in eval_results.values()]
|
109 |
|
110 |
return eval_results
|
111 |
|
|
|
114 |
eval_results = get_eval_results(is_public)
|
115 |
|
116 |
return [e.to_dict() for e in eval_results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elo_utils.py → src/elo_leaderboard/load_results.py
RENAMED
@@ -6,9 +6,9 @@ import numpy as np
|
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from visualizations import (
|
12 |
get_bootstrap_result,
|
13 |
switch_model_a_b,
|
14 |
visualize_battle_count,
|
@@ -18,29 +18,6 @@ from visualizations import (
|
|
18 |
)
|
19 |
|
20 |
|
21 |
-
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
22 |
-
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
23 |
-
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
24 |
-
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
25 |
-
MODEL_PAGE = "https://huggingface.co/models"
|
26 |
-
|
27 |
-
|
28 |
-
def make_clickable_model_elo(model_name):
|
29 |
-
link = ""
|
30 |
-
if model_name == "dolly-12b":
|
31 |
-
link = DOLLY_LINK
|
32 |
-
elif model_name == "vicuna-13b":
|
33 |
-
link = VICUNA_LINK
|
34 |
-
elif model_name == "koala-13b":
|
35 |
-
link = KOALA_LINK
|
36 |
-
elif model_name == "oasst-12b":
|
37 |
-
link = OASST_LINK
|
38 |
-
else:
|
39 |
-
link = MODEL_PAGE
|
40 |
-
|
41 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
42 |
-
|
43 |
-
|
44 |
@dataclass
|
45 |
class EloEvalResult:
|
46 |
model: str
|
@@ -53,11 +30,11 @@ class EloEvalResult:
|
|
53 |
def to_dict(self):
|
54 |
base_model = f"{self.model}"
|
55 |
data_dict = {}
|
56 |
-
data_dict[
|
57 |
-
data_dict[
|
58 |
-
data_dict[
|
59 |
-
data_dict[
|
60 |
-
data_dict[
|
61 |
|
62 |
return data_dict
|
63 |
|
|
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
|
9 |
+
from src.assets.text_content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
|
10 |
+
from src.utils_display import make_clickable_model, EloEvalColumn
|
11 |
+
from .visualizations import (
|
12 |
get_bootstrap_result,
|
13 |
switch_model_a_b,
|
14 |
visualize_battle_count,
|
|
|
18 |
)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
@dataclass
|
22 |
class EloEvalResult:
|
23 |
model: str
|
|
|
30 |
def to_dict(self):
|
31 |
base_model = f"{self.model}"
|
32 |
data_dict = {}
|
33 |
+
data_dict[EloEvalColumn.model.name] = make_clickable_model(base_model)
|
34 |
+
data_dict[EloEvalColumn.gpt4.name] = self.gpt_4_all
|
35 |
+
data_dict[EloEvalColumn.human_all.name] = self.human_all
|
36 |
+
data_dict[EloEvalColumn.human_instruct.name] = self.human_instruct
|
37 |
+
data_dict[EloEvalColumn.human_code_instruct.name] = self.human_code_instruct
|
38 |
|
39 |
return data_dict
|
40 |
|
visualizations.py → src/elo_leaderboard/visualizations.py
RENAMED
@@ -133,5 +133,5 @@ def visualize_rating_count(df, title):
|
|
133 |
fig.update_layout(xaxis_title="model", yaxis_title="Rating Count", showlegend=False)
|
134 |
fig.update_yaxes(range=[y_begin, y_end])
|
135 |
# save the plot for the blog:
|
136 |
-
fig.write_html("model_counts.html", full_html=False, include_plotlyjs="cdn")
|
137 |
return fig
|
|
|
133 |
fig.update_layout(xaxis_title="model", yaxis_title="Rating Count", showlegend=False)
|
134 |
fig.update_yaxes(range=[y_begin, y_end])
|
135 |
# save the plot for the blog:
|
136 |
+
fig.write_html("src/assets/model_counts.html", full_html=False, include_plotlyjs="cdn")
|
137 |
return fig
|
src/init.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import Repository
|
3 |
+
|
4 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
5 |
+
|
6 |
+
|
7 |
+
def get_all_requested_models(requested_models_dir):
|
8 |
+
depth = 1
|
9 |
+
file_names = []
|
10 |
+
|
11 |
+
for root, dirs, files in os.walk(requested_models_dir):
|
12 |
+
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
13 |
+
if current_depth == depth:
|
14 |
+
file_names.extend([os.path.join(root, file) for file in files])
|
15 |
+
|
16 |
+
return set([file_name.lower().split("eval_requests/")[1] for file_name in file_names])
|
17 |
+
|
18 |
+
def load_all_info_from_hub(LMEH_REPO, HUMAN_EVAL_REPO, GPT_4_EVAL_REPO):
|
19 |
+
auto_eval_repo = None
|
20 |
+
requested_models = None
|
21 |
+
if H4_TOKEN:
|
22 |
+
print("Pulling evaluation requests and results.")
|
23 |
+
# try:
|
24 |
+
# shutil.rmtree("./auto_evals/")
|
25 |
+
# except:
|
26 |
+
# pass
|
27 |
+
|
28 |
+
auto_eval_repo = Repository(
|
29 |
+
local_dir="./auto_evals/",
|
30 |
+
clone_from=LMEH_REPO,
|
31 |
+
use_auth_token=H4_TOKEN,
|
32 |
+
repo_type="dataset",
|
33 |
+
)
|
34 |
+
auto_eval_repo.git_pull()
|
35 |
+
|
36 |
+
requested_models_dir = "./auto_evals/eval_requests"
|
37 |
+
requested_models = get_all_requested_models(requested_models_dir)
|
38 |
+
|
39 |
+
human_eval_repo = None
|
40 |
+
if H4_TOKEN and not os.path.isdir("./human_evals"):
|
41 |
+
print("Pulling human evaluation repo")
|
42 |
+
human_eval_repo = Repository(
|
43 |
+
local_dir="./human_evals/",
|
44 |
+
clone_from=HUMAN_EVAL_REPO,
|
45 |
+
use_auth_token=H4_TOKEN,
|
46 |
+
repo_type="dataset",
|
47 |
+
)
|
48 |
+
human_eval_repo.git_pull()
|
49 |
+
|
50 |
+
gpt_4_eval_repo = None
|
51 |
+
if H4_TOKEN and not os.path.isdir("./gpt_4_evals"):
|
52 |
+
print("Pulling GPT-4 evaluation repo")
|
53 |
+
gpt_4_eval_repo = Repository(
|
54 |
+
local_dir="./gpt_4_evals/",
|
55 |
+
clone_from=GPT_4_EVAL_REPO,
|
56 |
+
use_auth_token=H4_TOKEN,
|
57 |
+
repo_type="dataset",
|
58 |
+
)
|
59 |
+
gpt_4_eval_repo.git_pull()
|
60 |
+
|
61 |
+
return auto_eval_repo, human_eval_repo, gpt_4_eval_repo, requested_models
|
62 |
+
|
63 |
+
|
64 |
+
#def load_results(model, benchmark, metric):
|
65 |
+
# file_path = os.path.join("autoevals", model, f"{model}-eval_{benchmark}.json")
|
66 |
+
# if not os.path.exists(file_path):
|
67 |
+
# return 0.0, None
|
68 |
+
|
69 |
+
# with open(file_path) as fp:
|
70 |
+
# data = json.load(fp)
|
71 |
+
# accs = np.array([v[metric] for k, v in data["results"].items()])
|
72 |
+
# mean_acc = np.mean(accs)
|
73 |
+
# return mean_acc, data["config"]["model_args"]
|
src/utils_display.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
# These classes are for user facing column names, to avoid having to change them
|
4 |
+
# all around the code when a modif is needed
|
5 |
+
@dataclass
|
6 |
+
class ColumnContent:
|
7 |
+
name: str
|
8 |
+
type: str
|
9 |
+
displayed_by_default: bool
|
10 |
+
|
11 |
+
def fields(raw_class):
|
12 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
13 |
+
|
14 |
+
@dataclass(frozen=True)
|
15 |
+
class AutoEvalColumn: # Auto evals column
|
16 |
+
model = ColumnContent("Model", "markdown", True)
|
17 |
+
revision = ColumnContent("Revision", "str", True)
|
18 |
+
is_8bit = ColumnContent("8bit", "bool", False)
|
19 |
+
license = ColumnContent("Hub License", "str", False)
|
20 |
+
params = ColumnContent("#Params (B)", "number", False)
|
21 |
+
likes = ColumnContent("Hub ❤️", "number", False)
|
22 |
+
average = ColumnContent("Average ⬆️", "number", True)
|
23 |
+
arc = ColumnContent("ARC (25-s) ⬆️", "number", True)
|
24 |
+
hellaswag = ColumnContent("HellaSwag (10-s) ⬆️", "number", True)
|
25 |
+
mmlu = ColumnContent("MMLU (5-s) ⬆️", "number", True)
|
26 |
+
truthfulqa = ColumnContent("TruthfulQA (MC) (0-s) ⬆️", "number", True)
|
27 |
+
dummy = ColumnContent("model_name_for_query", "str", True) # dummy col to implement search bar (hidden by custom CSS)
|
28 |
+
|
29 |
+
@dataclass(frozen=True)
|
30 |
+
class EloEvalColumn: # Elo evals column
|
31 |
+
model = ColumnContent("Model", "markdown", True)
|
32 |
+
gpt4 = ColumnContent("GPT-4 (all)", "number", True)
|
33 |
+
human_all = ColumnContent("Human (all)", "number", True)
|
34 |
+
human_instruct = ColumnContent("Human (instruct)", "number", True)
|
35 |
+
human_code_instruct = ColumnContent("Human (code-instruct)", "number", True)
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass(frozen=True)
|
39 |
+
class EvalQueueColumn: # Queue column
|
40 |
+
model = ColumnContent("model", "markdown", True)
|
41 |
+
revision = ColumnContent("revision", "str", True)
|
42 |
+
private = ColumnContent("private", "bool", True)
|
43 |
+
is_8bit = ColumnContent("8bit_eval", "bool", True)
|
44 |
+
has_delta_weight = ColumnContent("is_delta_weight", "bool", True)
|
45 |
+
status = ColumnContent("status", "str", True)
|
46 |
+
|
47 |
+
LLAMAS = ["huggingface/llama-7b", "huggingface/llama-13b", "huggingface/llama-30b", "huggingface/llama-65b"]
|
48 |
+
|
49 |
+
|
50 |
+
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
|
51 |
+
VICUNA_LINK = "https://huggingface.co/lmsys/vicuna-13b-delta-v1.1"
|
52 |
+
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
|
53 |
+
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
|
54 |
+
MODEL_PAGE = "https://huggingface.co/models"
|
55 |
+
LLAMA_LINK = "https://ai.facebook.com/blog/large-language-model-llama-meta-ai/"
|
56 |
+
VICUNA_LINK = "https://huggingface.co/CarperAI/stable-vicuna-13b-delta"
|
57 |
+
ALPACA_LINK = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
|
58 |
+
|
59 |
+
|
60 |
+
def model_hyperlink(link, model_name):
|
61 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
62 |
+
|
63 |
+
|
64 |
+
def make_clickable_model(model_name):
|
65 |
+
link = f"https://huggingface.co/{model_name}"
|
66 |
+
|
67 |
+
if model_name in LLAMAS:
|
68 |
+
link = LLAMA_LINK
|
69 |
+
model_name = model_name.split("/")[1]
|
70 |
+
elif model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
|
71 |
+
link = VICUNA_LINK
|
72 |
+
model_name = "stable-vicuna-13b"
|
73 |
+
elif model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
|
74 |
+
link = ALPACA_LINK
|
75 |
+
model_name = "alpaca-13b"
|
76 |
+
if model_name == "dolly-12b":
|
77 |
+
link = DOLLY_LINK
|
78 |
+
elif model_name == "vicuna-13b":
|
79 |
+
link = VICUNA_LINK
|
80 |
+
elif model_name == "koala-13b":
|
81 |
+
link = KOALA_LINK
|
82 |
+
elif model_name == "oasst-12b":
|
83 |
+
link = OASST_LINK
|
84 |
+
#else:
|
85 |
+
# link = MODEL_PAGE
|
86 |
+
|
87 |
+
return model_hyperlink(link, model_name)
|
88 |
+
|
89 |
+
def styled_error(error):
|
90 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
91 |
+
|
92 |
+
def styled_warning(warn):
|
93 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
94 |
+
|
95 |
+
def styled_message(message):
|
96 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|