Black-N-White-To-Color / colorization_deploy_v2.prototxt
BilalSardar's picture
Upload 3 files
ae4a895
raw
history blame
9.95 kB
name: "LtoAB"
layer {
name: "data_l"
type: "Input"
top: "data_l"
input_param {
shape { dim: 1 dim: 1 dim: 224 dim: 224 }
}
}
# *****************
# ***** conv1 *****
# *****************
layer {
name: "bw_conv1_1"
type: "Convolution"
bottom: "data_l"
top: "conv1_1"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
}
layer {
name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
}
layer {
name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
stride: 2
}
}
layer {
name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
}
layer {
name: "conv1_2norm"
type: "BatchNorm"
bottom: "conv1_2"
top: "conv1_2norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv2 *****
# *****************
layer {
name: "conv2_1"
type: "Convolution"
# bottom: "conv1_2"
bottom: "conv1_2norm"
# bottom: "pool1"
top: "conv2_1"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
}
layer {
name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
}
}
layer {
name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "conv2_2norm"
type: "BatchNorm"
bottom: "conv2_2"
top: "conv2_2norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv3 *****
# *****************
layer {
name: "conv3_1"
type: "Convolution"
# bottom: "conv2_2"
bottom: "conv2_2norm"
# bottom: "pool2"
top: "conv3_1"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
stride: 2
}
}
layer {
name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
}
layer {
name: "conv3_3norm"
type: "BatchNorm"
bottom: "conv3_3"
top: "conv3_3norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv4 *****
# *****************
layer {
name: "conv4_1"
type: "Convolution"
# bottom: "conv3_3"
bottom: "conv3_3norm"
# bottom: "pool3"
top: "conv4_1"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 1
dilation: 1
}
}
layer {
name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 1
dilation: 1
}
}
layer {
name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 1
dilation: 1
}
}
layer {
name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
}
layer {
name: "conv4_3norm"
type: "BatchNorm"
bottom: "conv4_3"
top: "conv4_3norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv5 *****
# *****************
layer {
name: "conv5_1"
type: "Convolution"
# bottom: "conv4_3"
bottom: "conv4_3norm"
# bottom: "pool4"
top: "conv5_1"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 2
dilation: 2
}
}
layer {
name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 2
dilation: 2
}
}
layer {
name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
}
layer {
name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
# param {lr_mult: 0 decay_mult: 0}
# param {lr_mult: 0 decay_mult: 0}
convolution_param {
num_output: 512
kernel_size: 3
stride: 1
pad: 2
dilation: 2
}
}
layer {
name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
}
layer {
name: "conv5_3norm"
type: "BatchNorm"
bottom: "conv5_3"
top: "conv5_3norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv6 *****
# *****************
layer {
name: "conv6_1"
type: "Convolution"
bottom: "conv5_3norm"
top: "conv6_1"
convolution_param {
num_output: 512
kernel_size: 3
pad: 2
dilation: 2
}
}
layer {
name: "relu6_1"
type: "ReLU"
bottom: "conv6_1"
top: "conv6_1"
}
layer {
name: "conv6_2"
type: "Convolution"
bottom: "conv6_1"
top: "conv6_2"
convolution_param {
num_output: 512
kernel_size: 3
pad: 2
dilation: 2
}
}
layer {
name: "relu6_2"
type: "ReLU"
bottom: "conv6_2"
top: "conv6_2"
}
layer {
name: "conv6_3"
type: "Convolution"
bottom: "conv6_2"
top: "conv6_3"
convolution_param {
num_output: 512
kernel_size: 3
pad: 2
dilation: 2
}
}
layer {
name: "relu6_3"
type: "ReLU"
bottom: "conv6_3"
top: "conv6_3"
}
layer {
name: "conv6_3norm"
type: "BatchNorm"
bottom: "conv6_3"
top: "conv6_3norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv7 *****
# *****************
layer {
name: "conv7_1"
type: "Convolution"
bottom: "conv6_3norm"
top: "conv7_1"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
dilation: 1
}
}
layer {
name: "relu7_1"
type: "ReLU"
bottom: "conv7_1"
top: "conv7_1"
}
layer {
name: "conv7_2"
type: "Convolution"
bottom: "conv7_1"
top: "conv7_2"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
dilation: 1
}
}
layer {
name: "relu7_2"
type: "ReLU"
bottom: "conv7_2"
top: "conv7_2"
}
layer {
name: "conv7_3"
type: "Convolution"
bottom: "conv7_2"
top: "conv7_3"
convolution_param {
num_output: 512
kernel_size: 3
pad: 1
dilation: 1
}
}
layer {
name: "relu7_3"
type: "ReLU"
bottom: "conv7_3"
top: "conv7_3"
}
layer {
name: "conv7_3norm"
type: "BatchNorm"
bottom: "conv7_3"
top: "conv7_3norm"
batch_norm_param{ }
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
param {lr_mult: 0 decay_mult: 0}
}
# *****************
# ***** conv8 *****
# *****************
layer {
name: "conv8_1"
type: "Deconvolution"
bottom: "conv7_3norm"
top: "conv8_1"
convolution_param {
num_output: 256
kernel_size: 4
pad: 1
dilation: 1
stride: 2
}
}
layer {
name: "relu8_1"
type: "ReLU"
bottom: "conv8_1"
top: "conv8_1"
}
layer {
name: "conv8_2"
type: "Convolution"
bottom: "conv8_1"
top: "conv8_2"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
dilation: 1
}
}
layer {
name: "relu8_2"
type: "ReLU"
bottom: "conv8_2"
top: "conv8_2"
}
layer {
name: "conv8_3"
type: "Convolution"
bottom: "conv8_2"
top: "conv8_3"
convolution_param {
num_output: 256
kernel_size: 3
pad: 1
dilation: 1
}
}
layer {
name: "relu8_3"
type: "ReLU"
bottom: "conv8_3"
top: "conv8_3"
}
# *******************
# ***** Softmax *****
# *******************
layer {
name: "conv8_313"
type: "Convolution"
bottom: "conv8_3"
top: "conv8_313"
convolution_param {
num_output: 313
kernel_size: 1
stride: 1
dilation: 1
}
}
layer {
name: "conv8_313_rh"
type: "Scale"
bottom: "conv8_313"
top: "conv8_313_rh"
scale_param {
bias_term: false
filler { type: 'constant' value: 2.606 }
}
}
layer {
name: "class8_313_rh"
type: "Softmax"
bottom: "conv8_313_rh"
top: "class8_313_rh"
}
# ********************
# ***** Decoding *****
# ********************
layer {
name: "class8_ab"
type: "Convolution"
bottom: "class8_313_rh"
top: "class8_ab"
convolution_param {
num_output: 2
kernel_size: 1
stride: 1
dilation: 1
}
}
layer {
name: "Silence"
type: "Silence"
bottom: "class8_ab"
}