Spaces:
Runtime error
Runtime error
# Import statements | |
import numpy as np | |
import argparse | |
import cv2 | |
import os | |
import gradio as gr | |
PROTOTXT = "colorization_deploy_v2.prototxt" | |
POINTS = "pts_in_hull.npy" | |
MODEL = "colorization_release_v2.caffemodel" | |
# Load the Model | |
print("Load model") | |
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL) | |
pts = np.load(POINTS) | |
# Load centers for ab channel quantization used for rebalancing. | |
class8 = net.getLayerId("class8_ab") | |
conv8 = net.getLayerId("conv8_313_rh") | |
pts = pts.transpose().reshape(2, 313, 1, 1) | |
net.getLayer(class8).blobs = [pts.astype("float32")] | |
net.getLayer(conv8).blobs = [np.full([1, 313], 2.606, dtype="float32")] | |
def colorizedTheImage(image): | |
# Load the input image | |
scaled = image.astype("float32") / 255.0 | |
lab = cv2.cvtColor(scaled, cv2.COLOR_BGR2LAB) | |
resized = cv2.resize(lab, (224, 224)) | |
L = cv2.split(resized)[0] | |
L -= 50 | |
print("Colorizing the image") | |
net.setInput(cv2.dnn.blobFromImage(L)) | |
ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) | |
ab = cv2.resize(ab, (image.shape[1], image.shape[0])) | |
L = cv2.split(lab)[0] | |
colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) | |
colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR) | |
colorized = np.clip(colorized, 0, 1) | |
colorized = (255 * colorized).astype("uint8") | |
return colorized | |
# image = cv2.resize(image, (0,0), fx=0.5, fy=0.5) | |
# colorized = cv2.resize(colorized, (0,0), fx=0.5, fy=0.5) | |
# cv2.imshow("Original", image) | |
# cv2.imshow("Colorized", colorized) | |
# cv2.waitKey(0) | |
demo=gr.Interface(fn=colorizedTheImage, | |
inputs=["image"], | |
outputs=["image"], | |
examples=[["einstein.jpg"],["tiger.jpg"]], | |
title="Black&White To Color Image") |