# Import statements import numpy as np import cv2 import gradio as gr PROTOTXT = "colorization_deploy_v2.prototxt" POINTS = "pts_in_hull.npy" MODEL = "colorization_release_v2.caffemodel" # Load the Model print("Load model") net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL) pts = np.load(POINTS) # Load centers for ab channel quantization used for rebalancing. class8 = net.getLayerId("class8_ab") conv8 = net.getLayerId("conv8_313_rh") pts = pts.transpose().reshape(2, 313, 1, 1) net.getLayer(class8).blobs = [pts.astype("float32")] net.getLayer(conv8).blobs = [np.full([1, 313], 2.606, dtype="float32")] # Load the input image def colorizedTheImage(image): scaled = image.astype("float32") / 255.0 lab = cv2.cvtColor(scaled, cv2.COLOR_BGR2LAB) resized = cv2.resize(lab, (224, 224)) L = cv2.split(resized)[0] L -= 50 print("Colorizing the image") net.setInput(cv2.dnn.blobFromImage(L)) ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) ab = cv2.resize(ab, (image.shape[1], image.shape[0])) L = cv2.split(lab)[0] colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR) colorized = np.clip(colorized, 0, 1) colorized = (255 * colorized).astype("uint8") colorized = cv2.cvtColor(colorized, cv2.COLOR_RGB2BGR) return colorized demo=gr.Interface(fn=colorizedTheImage, inputs=["image"], outputs=["image"], examples=[["einstein.jpg"],["tiger.jpg"]], title="Black&White To Color Image") demo.launch(debug=True)