Spaces:
Runtime error
Runtime error
BilalSardar
commited on
Commit
•
2ec286a
1
Parent(s):
7b89005
Upload 3 files
Browse files- 1.jpg +0 -0
- RemoveText.py +70 -0
- text_removed_image.jpg +0 -0
1.jpg
ADDED
RemoveText.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from cv2 import threshold
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import keras_ocr
|
6 |
+
import cv2
|
7 |
+
import math
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def midpoint(x1, y1, x2, y2):
|
12 |
+
x_mid = int((x1 + x2)/2)
|
13 |
+
y_mid = int((y1 + y2)/2)
|
14 |
+
return (x_mid, y_mid)
|
15 |
+
|
16 |
+
def segment_img(img):
|
17 |
+
hsv=cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
|
18 |
+
#mask
|
19 |
+
mask=cv2.inRange(hsv,(40,25,25),(70,255,255))
|
20 |
+
|
21 |
+
imask=mask>0
|
22 |
+
threshold=np.zeros_like(img,np.uint8)
|
23 |
+
threshold[imask]=img[imask]
|
24 |
+
|
25 |
+
return threshold
|
26 |
+
#Main function that detects text and inpaints.
|
27 |
+
#Inputs are the image path and kreas_ocr pipeline
|
28 |
+
def inpaint_text(img_path, pipeline):
|
29 |
+
# read the image
|
30 |
+
img = keras_ocr.tools.read(img_path)
|
31 |
+
|
32 |
+
#img=segment_img(img)
|
33 |
+
|
34 |
+
|
35 |
+
# Recogize text (and corresponding regions)
|
36 |
+
# Each list of predictions in prediction_groups is a list of
|
37 |
+
# (word, box) tuples.
|
38 |
+
prediction_groups = pipeline.recognize([img])
|
39 |
+
|
40 |
+
#Define the mask for inpainting
|
41 |
+
mask = np.zeros(img.shape[:2], dtype="uint8")
|
42 |
+
for box in prediction_groups[0]:
|
43 |
+
x0, y0 = box[1][0]
|
44 |
+
x1, y1 = box[1][1]
|
45 |
+
x2, y2 = box[1][2]
|
46 |
+
x3, y3 = box[1][3]
|
47 |
+
|
48 |
+
x_mid0, y_mid0 = midpoint(x1, y1, x2, y2)
|
49 |
+
x_mid1, y_mi1 = midpoint(x0, y0, x3, y3)
|
50 |
+
|
51 |
+
#For the line thickness, we will calculate the length of the line between
|
52 |
+
#the top-left corner and the bottom-left corner.
|
53 |
+
thickness = int(math.sqrt( (x2 - x1)**2 + (y2 - y1)**2 ))
|
54 |
+
|
55 |
+
#Define the line and inpaint
|
56 |
+
cv2.line(mask, (x_mid0, y_mid0), (x_mid1, y_mi1), 255,
|
57 |
+
thickness)
|
58 |
+
inpainted_img = cv2.inpaint(img, mask, 7, cv2.INPAINT_NS)
|
59 |
+
|
60 |
+
return (inpainted_img)
|
61 |
+
|
62 |
+
# keras-ocr will automatically download pretrained
|
63 |
+
# weights for the detector and recognizer.
|
64 |
+
pipeline = keras_ocr.pipeline.Pipeline()
|
65 |
+
|
66 |
+
img_text_removed = inpaint_text('1.jpg', pipeline)
|
67 |
+
|
68 |
+
plt.imshow(img_text_removed)
|
69 |
+
|
70 |
+
cv2.imwrite('text_removed_image.jpg', cv2.cvtColor(img_text_removed, cv2.COLOR_BGR2RGB))
|
text_removed_image.jpg
ADDED