BilalSardar's picture
Update app.py
a664558
raw
history blame
9.96 kB
import os
import gradio as gr
from pathlib import Path
from pydub import AudioSegment
from pydub.utils import make_chunks
import os
import gensim
from gensim.test.utils import datapath, get_tmpfile
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
import torch
import warnings
import speech_recognition as sr
from transformers import T5ForConditionalGeneration,T5Tokenizer
import nltk
from flashtext import KeywordProcessor
from collections import OrderedDict
from sklearn.metrics.pairwise import cosine_similarity
nltk.download('punkt')
nltk.download('brown')
nltk.download('wordnet')
nltk.download('stopwords')
from nltk.corpus import wordnet as wn
from nltk.tokenize import sent_tokenize
from textwrap3 import wrap
import random
import numpy as np
from nltk.corpus import stopwords
import string
import pke
import traceback
import spacy
warnings.filterwarnings("ignore")
def Process_audio(fileName):
text=''
txtf=open("The_audio.txt","w+")
myaudio=AudioSegment.from_wav(fileName)
chunks_length_ms=8000
chunks=make_chunks(myaudio,chunks_length_ms)
for i, chunk in enumerate(chunks):
chunkName='./chunked/'+fileName+"_{0}.wav".format(i)
print("I am Exporting",chunkName)
chunk.export(chunkName,format="wav")
File=chunkName
r= sr.Recognizer()
with sr.AudioFile(File) as source:
audio_listened=r.listen(source)
try:
rec=r.recognize_google(audio_listened)
txtf.write(rec+".")
text+=rec+"."
except sr.UnknownValueError:
print("I dont recognize your audio")
except sr.RequestError as e:
print("could not get result")
return text
try:
os.makedirs("chunked")
except:
pass
def UrlToAudio(VideoUrl):
url=VideoUrl
os.system("yt-dlp -x --audio-format wav " + url)
# load audio and pad/trim it to fit 30 seconds
base_path = Path(r"")
for wav_file_path in base_path.glob("*.wav"):
Process_audio(str(wav_file_path))
break
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary_model = summary_model.to(device)
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def postprocesstext (content):
final=""
for sent in sent_tokenize(content):
sent = sent.capitalize()
final = final +" "+sent
return final
def summarizer(text,model,tokenizer):
text = text.strip().replace("\n"," ")
text = "summarize: "+text
# print (text)
max_len = 512
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=3,
num_return_sequences=1,
no_repeat_ngram_size=2,
min_length = 75,
max_length=300)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
summary = dec[0]
summary = postprocesstext(summary)
summary= summary.strip()
return summary
def get_nouns_multipartite(content):
out=[]
try:
extractor = pke.unsupervised.MultipartiteRank()
# not contain punctuation marks or stopwords as candidates.
pos = {'PROPN','NOUN'}
#pos = {'PROPN','NOUN'}
stoplist = list(string.punctuation)
stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
stoplist += stopwords.words('english')
extractor.load_document(input=content,language='en',
stoplist=stoplist,
normalization=None)
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
keyphrases = extractor.get_n_best(n=15)
for val in keyphrases:
out.append(val[0])
except:
out = []
traceback.print_exc()
return out
def get_keywords(originaltext,summarytext):
keywords = get_nouns_multipartite(originaltext)
print ("keywords unsummarized: ",keywords)
keyword_processor = KeywordProcessor()
for keyword in keywords:
keyword_processor.add_keyword(keyword)
keywords_found = keyword_processor.extract_keywords(summarytext)
keywords_found = list(set(keywords_found))
print ("keywords_found in summarized: ",keywords_found)
important_keywords =[]
for keyword in keywords:
if keyword in keywords_found:
important_keywords.append(keyword)
return important_keywords[:4]
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
question_model = question_model.to(device)
def get_question(context,answer,model,tokenizer):
text = "context: {} answer: {}".format(context,answer)
encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = model.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=5,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=72)
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
Question = dec[0].replace("question:","")
Question= Question.strip()
return Question
def get_distractors_wordnet(word):
distractors=[]
try:
syn = wn.synsets(word,'n')[0]
word= word.lower()
orig_word = word
if len(word.split())>0:
word = word.replace(" ","_")
hypernym = syn.hypernyms()
if len(hypernym) == 0:
return distractors
for item in hypernym[0].hyponyms():
name = item.lemmas()[0].name()
#print ("name ",name, " word",orig_word)
if name == orig_word:
continue
name = name.replace("_"," ")
name = " ".join(w.capitalize() for w in name.split())
if name is not None and name not in distractors:
distractors.append(name)
except:
print ("Wordnet distractors not found")
return distractors
glove_file = '/home/user/app/glove.6B.300d.txt'
tmp_file = '/home/user/app/word2vec-glove.6B.300d.txt'
glove2word2vec(glove_file, tmp_file)
model = KeyedVectors.load_word2vec_format(tmp_file)
def generate_distractors(answer, count):
answer = str.lower(answer)
##Extracting closest words for the answer.
try:
closestWords = model.most_similar(positive=[answer], topn=count)
except:
#In case the word is not in the vocabulary, or other problem not loading embeddings
return []
#Return count many distractors
distractors = list(map(lambda x: x[0], closestWords))[0:count]
return distractors
context1 = gr.inputs.Textbox(lines=10, placeholder="Enter link here...")
output = gr.outputs.HTML( label="Question and Answers")
radiobutton = gr.inputs.Radio(["Wordnet", "Gensim"])
def generate_question(context1,radiobutton):
# try:
f = open("The_audio.txt", "r")
context=f.read()
summary_text = summarizer(context,summary_model,summary_tokenizer)
for wrp in wrap(summary_text, 150):
print (wrp)
# np = getnounphrases(summary_text,sentence_transformer_model,3)
np = get_keywords(context,summary_text)
print ("\n\nNoun phrases",np)
output=""
for answer in np:
ques = get_question(summary_text,answer,question_model,question_tokenizer)
if radiobutton=="Wordnet":
distractors = get_distractors_wordnet(answer)
else:
distractors = generate_distractors(answer.capitalize(),3)
print(distractors)
# output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
output ="\n"+ output + "<b style='color:blue;'>" + ques + "</b>"
# output = output + "<br>"
output ="\n"+ output + "<b style='color:green;'>" + "Ans: " +answer.capitalize()+ "</b>"
if len(distractors)>0:
for distractor in distractors[:4]:
output = output + " <b style='color:brown;'>" + distractor+ "</b>\n"
output = output + "<br>"
summary ="Summary: "+ summary_text
for answer in np:
summary = summary.replace(answer,"<b>"+answer+"</b>")
summary = summary.replace(answer.capitalize(),"<b>"+answer.capitalize()+"</b>")
output = output + "<p>"+summary+"</p>"
return output
# except:
# return "Something Went Wrong...Please Check Link or try Again"
iface = gr.Interface(
fn=generate_question,
inputs=[context1,radiobutton],
title="VidQuest",
examples=[["https://www.youtube.com/watch?v=WSbgixdC9g8","Gensim"]],
description="Keep in mind that it might take some minutes. Correct answers appear in green, while incorrect choices appear in red. Use the Gensim tool to find the most appropriate distractions.",
outputs=output)
iface.launch(debug=True)