Spaces:
Build error
Build error
BilalSardar
commited on
Commit
•
368af9f
1
Parent(s):
a356cd0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from pathlib import Path
|
4 |
+
from pydub import AudioSegment
|
5 |
+
from pydub.utils import make_chunks
|
6 |
+
import os
|
7 |
+
import warnings
|
8 |
+
import speech_recognition as sr
|
9 |
+
import torch
|
10 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
11 |
+
import nltk
|
12 |
+
from flashtext import KeywordProcessor
|
13 |
+
from collections import OrderedDict
|
14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
+
|
16 |
+
nltk.download('punkt')
|
17 |
+
nltk.download('brown')
|
18 |
+
nltk.download('wordnet')
|
19 |
+
nltk.download('stopwords')
|
20 |
+
from nltk.corpus import wordnet as wn
|
21 |
+
from nltk.tokenize import sent_tokenize
|
22 |
+
from textwrap3 import wrap
|
23 |
+
import random
|
24 |
+
import numpy as np
|
25 |
+
from nltk.corpus import stopwords
|
26 |
+
import string
|
27 |
+
import pke
|
28 |
+
import traceback
|
29 |
+
|
30 |
+
|
31 |
+
warnings.filterwarnings("ignore")
|
32 |
+
|
33 |
+
|
34 |
+
def Process_audio(fileName):
|
35 |
+
|
36 |
+
txtf=open("The_audio.txt","w+")
|
37 |
+
myaudio=AudioSegment.from_wav(fileName)
|
38 |
+
chunks_length_ms=8000
|
39 |
+
chunks=make_chunks(myaudio,chunks_length_ms)
|
40 |
+
for i, chunk in enumerate(chunks):
|
41 |
+
chunkName='./chunked/'+fileName+"_{0}.wav".format(i)
|
42 |
+
print("I am Exporting",chunkName)
|
43 |
+
chunk.export(chunkName,format="wav")
|
44 |
+
File=chunkName
|
45 |
+
r= sr.Recognizer()
|
46 |
+
with sr.AudioFile(File) as source:
|
47 |
+
audio_listened=r.listen(source)
|
48 |
+
|
49 |
+
try:
|
50 |
+
rec=r.recognize_google(audio_listened)
|
51 |
+
txtf.write(rec+".")
|
52 |
+
|
53 |
+
except sr.UnknownValueError:
|
54 |
+
print("I dont recognize your audio")
|
55 |
+
except sr.RequestError as e:
|
56 |
+
print("could not get result")
|
57 |
+
|
58 |
+
try:
|
59 |
+
os.makedirs("chunked")
|
60 |
+
except:
|
61 |
+
pass
|
62 |
+
|
63 |
+
def UrlToAudio(VideoUrl):
|
64 |
+
url=VideoUrl
|
65 |
+
os.system("youtube-dl -x --audio-format wav " + url)
|
66 |
+
# load audio and pad/trim it to fit 30 seconds
|
67 |
+
base_path = Path(r"")
|
68 |
+
for wav_file_path in base_path.glob("*.wav"):
|
69 |
+
Process_audio(str(wav_file_path))
|
70 |
+
break
|
71 |
+
|
72 |
+
|
73 |
+
summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')
|
74 |
+
summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
75 |
+
|
76 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
77 |
+
summary_model = summary_model.to(device)
|
78 |
+
|
79 |
+
|
80 |
+
def set_seed(seed: int):
|
81 |
+
random.seed(seed)
|
82 |
+
np.random.seed(seed)
|
83 |
+
torch.manual_seed(seed)
|
84 |
+
torch.cuda.manual_seed_all(seed)
|
85 |
+
|
86 |
+
def postprocesstext (content):
|
87 |
+
final=""
|
88 |
+
for sent in sent_tokenize(content):
|
89 |
+
sent = sent.capitalize()
|
90 |
+
final = final +" "+sent
|
91 |
+
return final
|
92 |
+
|
93 |
+
|
94 |
+
def summarizer(text,model,tokenizer):
|
95 |
+
text = text.strip().replace("\n"," ")
|
96 |
+
text = "summarize: "+text
|
97 |
+
# print (text)
|
98 |
+
max_len = 512
|
99 |
+
encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
|
100 |
+
|
101 |
+
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
|
102 |
+
|
103 |
+
outs = model.generate(input_ids=input_ids,
|
104 |
+
attention_mask=attention_mask,
|
105 |
+
early_stopping=True,
|
106 |
+
num_beams=3,
|
107 |
+
num_return_sequences=1,
|
108 |
+
no_repeat_ngram_size=2,
|
109 |
+
min_length = 75,
|
110 |
+
max_length=300)
|
111 |
+
|
112 |
+
|
113 |
+
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
|
114 |
+
summary = dec[0]
|
115 |
+
summary = postprocesstext(summary)
|
116 |
+
summary= summary.strip()
|
117 |
+
|
118 |
+
return summary
|
119 |
+
|
120 |
+
|
121 |
+
def get_nouns_multipartite(content):
|
122 |
+
out=[]
|
123 |
+
try:
|
124 |
+
extractor = pke.unsupervised.MultipartiteRank()
|
125 |
+
|
126 |
+
# not contain punctuation marks or stopwords as candidates.
|
127 |
+
pos = {'PROPN','NOUN'}
|
128 |
+
#pos = {'PROPN','NOUN'}
|
129 |
+
stoplist = list(string.punctuation)
|
130 |
+
stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']
|
131 |
+
stoplist += stopwords.words('english')
|
132 |
+
|
133 |
+
extractor.load_document(input=content,language='en',
|
134 |
+
stoplist=stoplist,
|
135 |
+
normalization=None)
|
136 |
+
|
137 |
+
extractor.candidate_selection(pos=pos)
|
138 |
+
# 4. build the Multipartite graph and rank candidates using random walk,
|
139 |
+
# alpha controls the weight adjustment mechanism, see TopicRank for
|
140 |
+
# threshold/method parameters.
|
141 |
+
extractor.candidate_weighting(alpha=1.1,
|
142 |
+
threshold=0.75,
|
143 |
+
method='average')
|
144 |
+
keyphrases = extractor.get_n_best(n=15)
|
145 |
+
|
146 |
+
|
147 |
+
for val in keyphrases:
|
148 |
+
out.append(val[0])
|
149 |
+
except:
|
150 |
+
out = []
|
151 |
+
traceback.print_exc()
|
152 |
+
|
153 |
+
return out
|
154 |
+
|
155 |
+
def get_keywords(originaltext,summarytext):
|
156 |
+
keywords = get_nouns_multipartite(originaltext)
|
157 |
+
print ("keywords unsummarized: ",keywords)
|
158 |
+
keyword_processor = KeywordProcessor()
|
159 |
+
for keyword in keywords:
|
160 |
+
keyword_processor.add_keyword(keyword)
|
161 |
+
|
162 |
+
keywords_found = keyword_processor.extract_keywords(summarytext)
|
163 |
+
keywords_found = list(set(keywords_found))
|
164 |
+
print ("keywords_found in summarized: ",keywords_found)
|
165 |
+
|
166 |
+
important_keywords =[]
|
167 |
+
for keyword in keywords:
|
168 |
+
if keyword in keywords_found:
|
169 |
+
important_keywords.append(keyword)
|
170 |
+
|
171 |
+
return important_keywords[:4]
|
172 |
+
|
173 |
+
question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')
|
174 |
+
question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')
|
175 |
+
question_model = question_model.to(device)
|
176 |
+
|
177 |
+
def get_question(context,answer,model,tokenizer):
|
178 |
+
text = "context: {} answer: {}".format(context,answer)
|
179 |
+
encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors="pt").to(device)
|
180 |
+
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
|
181 |
+
|
182 |
+
outs = model.generate(input_ids=input_ids,
|
183 |
+
attention_mask=attention_mask,
|
184 |
+
early_stopping=True,
|
185 |
+
num_beams=5,
|
186 |
+
num_return_sequences=1,
|
187 |
+
no_repeat_ngram_size=2,
|
188 |
+
max_length=72)
|
189 |
+
|
190 |
+
|
191 |
+
dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]
|
192 |
+
|
193 |
+
|
194 |
+
Question = dec[0].replace("question:","")
|
195 |
+
Question= Question.strip()
|
196 |
+
return Question
|
197 |
+
def get_distractors_wordnet(word):
|
198 |
+
distractors=[]
|
199 |
+
try:
|
200 |
+
syn = wn.synsets(word,'n')[0]
|
201 |
+
|
202 |
+
word= word.lower()
|
203 |
+
orig_word = word
|
204 |
+
if len(word.split())>0:
|
205 |
+
word = word.replace(" ","_")
|
206 |
+
hypernym = syn.hypernyms()
|
207 |
+
if len(hypernym) == 0:
|
208 |
+
return distractors
|
209 |
+
for item in hypernym[0].hyponyms():
|
210 |
+
name = item.lemmas()[0].name()
|
211 |
+
#print ("name ",name, " word",orig_word)
|
212 |
+
if name == orig_word:
|
213 |
+
continue
|
214 |
+
name = name.replace("_"," ")
|
215 |
+
name = " ".join(w.capitalize() for w in name.split())
|
216 |
+
if name is not None and name not in distractors:
|
217 |
+
distractors.append(name)
|
218 |
+
except:
|
219 |
+
print ("Wordnet distractors not found")
|
220 |
+
return distractors
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
context1 = gr.inputs.Textbox(lines=10, placeholder="Enter link here...")
|
225 |
+
output = gr.outputs.HTML( label="Question and Answers")
|
226 |
+
radiobutton = gr.inputs.Radio(["Wordnet", "Gensim"])
|
227 |
+
|
228 |
+
def generate_question(context1,radiobutton):
|
229 |
+
UrlToAudio(context1)
|
230 |
+
f = open("The_audio.txt", "r")
|
231 |
+
context=f.read()
|
232 |
+
summary_text = summarizer(context,summary_model,summary_tokenizer)
|
233 |
+
for wrp in wrap(summary_text, 150):
|
234 |
+
print (wrp)
|
235 |
+
# np = getnounphrases(summary_text,sentence_transformer_model,3)
|
236 |
+
np = get_keywords(context,summary_text)
|
237 |
+
print ("\n\nNoun phrases",np)
|
238 |
+
output=""
|
239 |
+
for answer in np:
|
240 |
+
ques = get_question(summary_text,answer,question_model,question_tokenizer)
|
241 |
+
if radiobutton=="Wordnet":
|
242 |
+
distractors = get_distractors_wordnet(answer)
|
243 |
+
#else:
|
244 |
+
#distractors = generate_distractors(answer.capitalize(),3)
|
245 |
+
#print(distractors)
|
246 |
+
|
247 |
+
# output= output + ques + "\n" + "Ans: "+answer.capitalize() + "\n\n"
|
248 |
+
output ="\n"+ output + "<b style='color:blue;'>" + ques + "</b>"
|
249 |
+
# output = output + "<br>"
|
250 |
+
output ="\n"+ output + "<b style='color:green;'>" + "Ans: " +answer.capitalize()+ "</b>"
|
251 |
+
if len(distractors)>0:
|
252 |
+
for distractor in distractors[:4]:
|
253 |
+
output = output + "<b style='color:brown;'>" + distractor+ "</b>\n"
|
254 |
+
output = output + "<br>"
|
255 |
+
|
256 |
+
summary ="Summary: "+ summary_text
|
257 |
+
for answer in np:
|
258 |
+
summary = summary.replace(answer,"<b>"+answer+"</b>")
|
259 |
+
summary = summary.replace(answer.capitalize(),"<b>"+answer.capitalize()+"</b>")
|
260 |
+
output = output + "<p>"+summary+"</p>"
|
261 |
+
return output
|
262 |
+
|
263 |
+
|
264 |
+
iface = gr.Interface(
|
265 |
+
fn=generate_question,
|
266 |
+
inputs=[context1,radiobutton],
|
267 |
+
title="VidQuest",
|
268 |
+
outputs=output)
|
269 |
+
iface.launch(debug=True)
|