import pinecone from pprint import pprint import streamlit as st import torch from transformers import AutoTokenizer, AutoModel, AutoModelForSeq2SeqLM model_name = "vblagoje/bart_lfqa" # connect to pinecone environment pinecone.init( api_key="e5d4972e-0045-43d5-a55e-efdeafe442dd", environment="us-central1-gcp" # find next to API key in console ) index_name = "abstractive-question-answering" # check if the abstractive-question-answering index exists if index_name not in pinecone.list_indexes(): # create the index if it does not exist pinecone.create_index( index_name, dimension=768, metric="cosine" ) # connect to abstractive-question-answering index we created index = pinecone.Index(index_name) from transformers import BartTokenizer, BartForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model = model.to('cpu') import torch from sentence_transformers import SentenceTransformer # set device to GPU if available device = 'cuda' if torch.cuda.is_available() else 'cpu' # load the retriever model from huggingface model hub retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device) def query_pinecone(query, top_k): # generate embeddings for the query xq = retriever.encode([query]).tolist() # search pinecone index for context passage with the answer xc = index.query(xq, top_k=top_k, include_metadata=True) return xc def format_query(query, context): # extract passage_text from Pinecone search result and add the
tag context = [f"
{m['metadata']['text']}" for m in context] # concatinate all context passages context = " ".join(context) # contcatinate the query and context passages query = f"question: {query} context: {context}" return query def generate_answer(query): query_and_docs = query model_input = tokenizer(query_and_docs, truncation=True, padding=True, return_tensors="pt") generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device), attention_mask=model_input["attention_mask"].to(device), min_length=64, max_length=256, do_sample=False, early_stopping=True, num_beams=8, temperature=1.0, top_k=None, top_p=None, eos_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, num_return_sequences=1) res = tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,clean_up_tokenization_spaces=True) st.write(str(res)) query = st.text_area('Enter Question:') b = st.button('Submit!') if b: st.write("Processing, please wait!") context = query_pinecone(query, top_k=5) query = format_query(query, context["matches"]) generate_answer(query)