Spaces:
Runtime error
Runtime error
import pickle | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from sentence_transformers.util import semantic_search | |
from transformers import VisionTextDualEncoderModel, VisionTextDualEncoderProcessor | |
st.title("VitB32 Bert Ko Small Clip Test") | |
st.markdown("Unsplash data์์ ์ ๋ ฅ ํ ์คํธ์ ๊ฐ์ฅ ์ ์ฌํ ์ด๋ฏธ์ง๋ฅผ ๊ฒ์ํฉ๋๋ค.") | |
with st.spinner("Loading model..."): | |
model = VisionTextDualEncoderModel.from_pretrained( | |
"Bingsu/vitB32_bert_ko_small_clip" | |
) | |
processor = VisionTextDualEncoderProcessor.from_pretrained( | |
"Bingsu/vitB32_bert_ko_small_clip" | |
) | |
info = pd.read_csv("info.csv") | |
with open("img_id.pkl", "rb") as f: | |
img_id = pickle.load(f) | |
img_emb = np.load("img_emb.npy") | |
text = st.text_input("Input Text", value="๊ฒ์ ๊ณ ์์ด") | |
tokens = processor(text=text, return_tensors="pt") | |
with st.spinner("Predicting..."): | |
text_emb = model.get_text_features(**tokens) | |
result = semantic_search(text_emb, img_emb, top_k=6)[0] | |
columns = st.columns(3) + st.columns(3) | |
for i, col in enumerate(columns): | |
photo_id = img_id[result[i]["corpus_id"]] | |
target_series = info.loc[info["photo_id"] == photo_id, "photo_image_url"] | |
if len(target_series) == 0: | |
continue | |
img_url = target_series.iloc[0] | |
col.image(img_url, use_column_width=True) | |