diff --git "a/ipynb/llm/llama2_chat_lora_finetune.ipynb" "b/ipynb/llm/llama2_chat_lora_finetune.ipynb"
new file mode 100644--- /dev/null
+++ "b/ipynb/llm/llama2_chat_lora_finetune.ipynb"
@@ -0,0 +1,20336 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a9fd592d-0ad0-4f1b-94f4-0e5ae9dbeec7",
+ "metadata": {
+ "id": "a9fd592d-0ad0-4f1b-94f4-0e5ae9dbeec7"
+ },
+ "source": [
+ "# Fine-Tune a Causal Language Model for Dialogue Summarization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "976f3255-166f-4e6f-aaf0-ef6c4703b9f7",
+ "metadata": {
+ "id": "976f3255-166f-4e6f-aaf0-ef6c4703b9f7"
+ },
+ "source": [
+ "Fine-tune Meta's Llama 2 chat version for enhanced topic summarization creation of mutlitple choice question (MCQ). Llama 2 is a large language model (LLM) free for research and commercial use. It is one of the top-performing open-source LLM comparable to GPT-3.5 on several benchmarks.\n",
+ "\n",
+ "We will explore the use of Parameter Efficient Fine-Tuning (PEFT - lora) for fine-tuning, and evaluate the resulting model using ROUGE metrics."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3b6ce61-1b18-412e-8ea9-b1aa4b6ea33d",
+ "metadata": {
+ "id": "a3b6ce61-1b18-412e-8ea9-b1aa4b6ea33d"
+ },
+ "source": [
+ "## Install the pre-requisites\n",
+ "\n",
+ "Uncomment the following if these python packages have been installed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4da7e887-227f-4cce-983a-83ab3405de65",
+ "metadata": {
+ "tags": [],
+ "id": "4da7e887-227f-4cce-983a-83ab3405de65"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install transformers datasets accelerate sentencepiece scipy peft bitsandbytes evaluate rouge_score"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39feac3-3c0f-4057-83e2-898a0329cbee",
+ "metadata": {
+ "id": "a39feac3-3c0f-4057-83e2-898a0329cbee"
+ },
+ "source": [
+ "## Request access to Llama-2 weights\n",
+ "\n",
+ "You need to request for access to download the Llama 2 weights. You can either do so through this [link at Meta](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) or through your huggingface account at this [link](https://huggingface.co/meta-llama/Llama-2-7b). Once your request is approved, you will receive an email from Meta with instruction to download the Llama 2 weights, or email from Hugging Face informing you access has been granted.\n",
+ "\n",
+ "If you download the weights from Meta directly, you need to run a conversion script to convert the weights to huggingface format for use with huggingface transformer library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4178ec51-ccf8-4d01-8224-e57c8b0683f1",
+ "metadata": {
+ "tags": [],
+ "id": "4178ec51-ccf8-4d01-8224-e57c8b0683f1"
+ },
+ "outputs": [],
+ "source": [
+ "# %%bash\n",
+ "# TRANSFORM=`python -c \"import transformers;print('/'.join(transformers.__file__.split('/')[:-1])+'/models/llama/convert_llama_weights_to_hf.py')\"`\n",
+ "# python ${TRANSFORM} --input_dir models --model_size 7B --output_dir models_hf/7B"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "00149073-36b6-4317-818b-c8e0485cd8d2",
+ "metadata": {
+ "tags": [],
+ "id": "00149073-36b6-4317-818b-c8e0485cd8d2",
+ "outputId": "f9177be8-9d26-4968-b0b5-766d83b5ad62",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 145,
+ "referenced_widgets": [
+ "b82346ca91ad4a73b2bbe3b5c2857807",
+ "3cea202e1a1b45478775d05f27178538",
+ "012d0b97008247b9a03142cf26d0e381",
+ "7250673145e042cb8c952fdf3477f5a6",
+ "8688ae1d1fd544b39cd6b043bbf9e957",
+ "a13691db6f884feeab91a60df5f0e9a7",
+ "a57267ffc803442ca85085b7a88c2933",
+ "45b4e5284a1b4f4bb8b3e5f6746e3c46",
+ "2b62002cf89442e5b5b1a5a5315a6db2",
+ "5446b40d53804682948236d4ba98cdd6",
+ "21ea43357d7e4b2d8b2a3f12d199a3ce",
+ "eb24b1c2c039416a8b63910c9d254147",
+ "0e3de9ad4e1a4affbe73c1ee046c6105",
+ "ed850c64429740f5a9c624ba6a2a4060",
+ "43e5ac30013846e59bd4030e794190b1",
+ "22524832590147ee86f0ece7e4559664",
+ "5133470b3e744f448a94db36c881bd8b",
+ "0013b3a66f06485e90b804db70b2054d",
+ "1d19e959ce4140b596dc72c9d57a193b",
+ "badf45ea38774747ac770c65eb303a5d",
+ "5c6d035439414189bc5af05c7f65bb97",
+ "711d15c6f8504b5db01c30d9bcd56b88",
+ "69baeff0cf2c47d9beb5776a632b4bd6",
+ "6b945dc35b884080be8b3eeaf1f715dd",
+ "8b07392a7fcf49a0acf82d194456a22b",
+ "9dbed28f31ea4ec9b02d4c02e323bd57",
+ "35846883e9594a789da8a543d4964f2e",
+ "f3ad3dbf2df045688f734299b4ecc2cc",
+ "b9154c984d884c36bb149c09dc661976",
+ "0df6b38cecdb4285a3a32c21122ce738",
+ "52b605e03c58484eb906bd4b92343a6b",
+ "03b9c7c857284cdd85cec55f97d6e49f"
+ ]
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "VBox(children=(HTML(value='
\n",
+ " datasets.arrow_dataset.Dataset
def __init__(arrow_table: Table, info: Optional[DatasetInfo]=None, split: Optional[NamedSplit]=None, indices_table: Optional[Table]=None, fingerprint: Optional[str]=None)
/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.pyA Dataset backed by an Arrow table.
\n",
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(dataset_train)\n",
+ "print(dataset_test)\n",
+ "print(dataset_val)"
+ ],
+ "metadata": {
+ "id": "juh2RGTHjApA",
+ "outputId": "38815e79-7b61-4476-8974-cbb2e39ccbfe",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "id": "juh2RGTHjApA",
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Dataset({\n",
+ " features: ['expected_output', 'instruction', 'input_content'],\n",
+ " num_rows: 684\n",
+ "})\n",
+ "Dataset({\n",
+ " features: ['expected_output', 'instruction', 'input_content'],\n",
+ " num_rows: 147\n",
+ "})\n",
+ "Dataset({\n",
+ " features: ['expected_output', 'instruction', 'input_content'],\n",
+ " num_rows: 147\n",
+ "})\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f5b7da07-9192-4718-b10e-c47fa5634c02",
+ "metadata": {
+ "id": "f5b7da07-9192-4718-b10e-c47fa5634c02"
+ },
+ "source": [
+ "Let's taka a look at one of the samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f1ce8a86-3bc2-44d6-9cf1-3dcda2085ede",
+ "metadata": {
+ "tags": [],
+ "id": "f1ce8a86-3bc2-44d6-9cf1-3dcda2085ede",
+ "outputId": "726ded67-4ddd-4601-f17e-b271b48b336b",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "{'expected_output': '[question]: Which of the following is an application of machine learning in image recognition? [option A]: Analyzing financial transactions for fraud detection. [option B]: Transcribing spoken words into text. [option C]: Classifying images based on their contents. [option D]: Predicting when machinery is likely to fail. [correct_answer]: C, [explanation]:Machine learning algorithms are used in image recognition systems to classify images based on their contents.',\n",
+ " 'instruction': 'Create an MCQ on the application of machine learning in image recognition',\n",
+ " 'input_content': ''}"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 16
+ }
+ ],
+ "source": [
+ "dataset['train'][600]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e8358e2e-e29d-4d5c-89f9-f78959ef5527",
+ "metadata": {
+ "id": "e8358e2e-e29d-4d5c-89f9-f78959ef5527"
+ },
+ "source": [
+ "## Test the Model with Zero Shot Inferencing\n",
+ "\n",
+ "Let's test the model with zero shot inferencing (i.e. ask it to summarize without giving any example. You can see that the model struggles to summarize the dialogue compared to the baseline summary, and it is just repeating the conversation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "31def3d5-e863-4b34-8c2e-408a0cb8f0b4",
+ "metadata": {
+ "tags": [],
+ "id": "31def3d5-e863-4b34-8c2e-408a0cb8f0b4",
+ "outputId": "2d4059e9-4efd-4ac2-82e9-6f35dbaeb146",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\n",
+ "Create an Multiple choice question:\n",
+ "Artificial neural networks are built on the principles of the structure and operation of human neurons. \n",
+ "It is also known as neural networks or neural nets. An artificial neural network’s input layer, which is the first layer, receives input from external sources and passes it on to the hidden layer, which is the second layer. \n",
+ "Each neuron in the hidden layer gets information from the neurons in the previous layer, computes the weighted total, and then transfers it to the neurons in the next layer. \n",
+ "These connections are weighted, which means that the impacts of the inputs from the preceding layer are more or less optimized by giving each input a distinct weight. \n",
+ "These weights are then adjusted during the training process to enhance the performance of the model. \n",
+ "Artificial neurons, also known as units, are found in artificial neural networks. \n",
+ "The whole Artificial Neural Network is composed of these artificial neurons, which are arranged in a series of layers. \n",
+ "The complexities of neural networks will depend on the complexities of the underlying patterns in the dataset whether a layer has a dozen units or millions of units. \n",
+ "Commonly, Artificial Neural Network has an input layer, an output layer as well as hidden layers. \n",
+ "The input layer receives data from the outside world which the neural network needs to analyze or learn about. \n",
+ "In a fully connected artificial neural network, there is an input layer and one or more hidden layers connected one after the other. \n",
+ "Each neuron receives input from the previous layer neurons or the input layer. The output of one neuron becomes the input to other neurons in the next layer of the network, and this process continues until the final layer produces the output of the network. \n",
+ "Then, after passing through one or more hidden layers, this data is transformed into valuable data for the output layer. Finally, the output layer provides an output in the form of an artificial neural network’s response to the data that comes in.\n",
+ "\n",
+ "---\n",
+ "question:\n",
+ "options A:\n",
+ "options B:\n",
+ "options C:\n",
+ "options D:\n",
+ "correct_answer:\n",
+ "explanation: \n",
+ "Please select the correct answer from the options given below.\n",
+ "\n",
+ "A) Artificial neural networks are built on the principles of the structure and operation of human neurons.\n",
+ "B) An artificial neural network’s input layer, which is the first layer, receives input from external sources and passes it on to the hidden layer, which is the second layer.\n",
+ "C) Each neuron in the hidden layer gets information from the neurons in the previous layer, computes the weighted total, and then transfers it to the neurons in the next layer.\n",
+ "D) Artificial neurons, also known as units, are found in artificial neural networks.\n",
+ "\n",
+ "Please select the correct answer from the options given below.\n"
+ ]
+ }
+ ],
+ "source": [
+ "eval_prompt = \"\"\"\n",
+ "Create an Multiple choice question:\n",
+ "Artificial neural networks are built on the principles of the structure and operation of human neurons.\n",
+ "It is also known as neural networks or neural nets. An artificial neural network\\u2019s input layer, which is the first layer, receives input from external sources and passes it on to the hidden layer, which is the second layer.\n",
+ "Each neuron in the hidden layer gets information from the neurons in the previous layer, computes the weighted total, and then transfers it to the neurons in the next layer.\n",
+ "These connections are weighted, which means that the impacts of the inputs from the preceding layer are more or less optimized by giving each input a distinct weight.\n",
+ "These weights are then adjusted during the training process to enhance the performance of the model.\n",
+ "Artificial neurons, also known as units, are found in artificial neural networks.\n",
+ "The whole Artificial Neural Network is composed of these artificial neurons, which are arranged in a series of layers.\n",
+ "The complexities of neural networks will depend on the complexities of the underlying patterns in the dataset whether a layer has a dozen units or millions of units.\n",
+ "Commonly, Artificial Neural Network has an input layer, an output layer as well as hidden layers.\n",
+ "The input layer receives data from the outside world which the neural network needs to analyze or learn about.\n",
+ "In a fully connected artificial neural network, there is an input layer and one or more hidden layers connected one after the other.\n",
+ "Each neuron receives input from the previous layer neurons or the input layer. The output of one neuron becomes the input to other neurons in the next layer of the network, and this process continues until the final layer produces the output of the network.\n",
+ "Then, after passing through one or more hidden layers, this data is transformed into valuable data for the output layer. Finally, the output layer provides an output in the form of an artificial neural network\\u2019s response to the data that comes in.\n",
+ "\n",
+ "---\n",
+ "question:\n",
+ "options A:\n",
+ "options B:\n",
+ "options C:\n",
+ "options D:\n",
+ "correct_answer:\n",
+ "explanation:\n",
+ "\"\"\"\n",
+ "\n",
+ "model_input = tokenizer(eval_prompt, return_tensors=\"pt\").to(\"cuda\")\n",
+ "\n",
+ "model.eval()\n",
+ "with torch.no_grad(): # no gradient update\n",
+ " print(tokenizer.decode(model.generate(**model_input, max_new_tokens=200)[0], skip_special_tokens=True))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf285722-2ac5-4e60-8cc6-06c048e6d723",
+ "metadata": {
+ "id": "cf285722-2ac5-4e60-8cc6-06c048e6d723"
+ },
+ "source": [
+ "## Creating instruction dataset\n",
+ "\n",
+ "We will now prepare our dataset to fine-tune our base model (instruction fine-tuning)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e4012814-8355-4d75-8d0e-e1efbd2ba8de",
+ "metadata": {
+ "tags": [],
+ "id": "e4012814-8355-4d75-8d0e-e1efbd2ba8de"
+ },
+ "source": [
+ "### Instruction prompt\n",
+ "\n",
+ "We need to convert the insturctions+ input and expected output (prompt-response) pairs into explicit instructions for the LLM such as follows:\n",
+ "\n",
+ "```\n",
+ "{'text': \"[INST] Create an MCQ on the applications of deep learning\n",
+ "\n",
+ "Here's some context: Examples of Deep Learning:\\nDeep Learning is a type of Machine Learning that uses artificial neural networks with multiple layers to learn and make decisions.\\n....[/INST]\n",
+ "\n",
+ "[question]: Which of the following is an application of deep learning? [option A]: Analyzing financial transactions for fraud detection. [option B]: Predicting future stock prices. [option C]: Recognizing faces in photos. [option D]: All of the above. [correct_answer]: D, [explanation]:Deep learning is used in various applications, including analyzing financial transactions for fraud detection, predicting future stock prices, and recognizing faces in photos.\"}\n",
+ "\n",
+ "```\n",
+ "\n",
+ "We will create a prompt template and a function to apply the template to all the samples in our dataset. Note that we also append a eos token to the end of the sample. This is so that the fine-tuned model will learn to end the sentence at the appropriate time (e.g. end of the instructions) instead of generating tokens indefinitely."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(dataset_train)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "lQhBEMPc0IYs",
+ "outputId": "f1d3f21e-c365-47c3-a32d-d07f7cb46bbc"
+ },
+ "id": "lQhBEMPc0IYs",
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Dataset({\n",
+ " features: ['expected_output', 'instruction', 'input_content'],\n",
+ " num_rows: 684\n",
+ "})\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "#https://colab.research.google.com/drive/134o_cXcMe_lsvl15ZE_4Y75Kstepsntu?usp=sharing#scrollTo=NWbzDeSKmakC\n",
+ "#follow llama2 documentation to format the dataset for finetune\n",
+ "\n",
+ "def format_dolly(sample):\n",
+ " instruction = f\"[INST] {sample['instruction']}\"\n",
+ " context = f\"Here's some context: {sample['input_content']}\" if len(sample[\"input_content\"]) > 0 else None\n",
+ " response = f\" [/INST] {sample['expected_output']}\"\n",
+ " # join all the parts together\n",
+ " prompt = \"\".join([i for i in [instruction, context, response] if i is not None])\n",
+ " return prompt\n",
+ "\n",
+ "# template dataset to add prompt to each sample\n",
+ "def template_dataset(sample):\n",
+ " sample[\"text\"] = f\"{format_dolly(sample)}{tokenizer.eos_token}\"\n",
+ " return sample\n",
+ "\n",
+ "# apply prompt template per sample\n",
+ "#dataset = load_dataset(\"databricks/databricks-dolly-15k\", split=\"train\")\n",
+ "\n",
+ "# Shuffle the dataset\n",
+ "dataset_shuffled = dataset_train.shuffle(seed=42)\n",
+ "#dataset_shuffled = dataset_train\n",
+ "\n",
+ "# Select the first 50 rows from the shuffled dataset, comment if you want 15k\n",
+ "#dataset = dataset_shuffled.select(range(50))\n",
+ "\n",
+ "dataset_train = dataset_train.map(template_dataset, remove_columns=list(dataset_shuffled.features))\n",
+ "dataset_train"
+ ],
+ "metadata": {
+ "id": "4gPGgHJGn8yw",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 118,
+ "referenced_widgets": [
+ "c2f9f28cf2914570ac8446a48026a3bf",
+ "4dcde00cfe604b9e9109907b046bb18a",
+ "055478fbd9d442b28d984b153ad0e5ef",
+ "0f472edf561d478ba552a70669c9f3ea",
+ "f147916fb3f7465ebf856a198e0c9fab",
+ "a4666699cf28473fb4bae8ecb67cbf24",
+ "660e7e7d609a4a4b9004a689cbda87dc",
+ "daee76f875bf462990cd14c5cba818f9",
+ "ab5269cbbae6443dbd2cbb1444a7b56c",
+ "ad134097c8c34244bc155d94592e7fab",
+ "9762c56a82504232a4e2fb95f16e3f2a"
+ ]
+ },
+ "outputId": "e83d7a2d-1496-4cf1-c915-362bab9020dd"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map: 0%| | 0/684 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "c2f9f28cf2914570ac8446a48026a3bf"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['text'],\n",
+ " num_rows: 684\n",
+ "})"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 18
+ }
+ ],
+ "id": "4gPGgHJGn8yw"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea6b3ad5-e1ca-40ed-af2e-a042b4e14f2f",
+ "metadata": {
+ "id": "ea6b3ad5-e1ca-40ed-af2e-a042b4e14f2f"
+ },
+ "source": [
+ "Let's look at one of the sample. We can see that the original sample has been converted to sample with a single 'text' field, and the text now confirms to the template we specified."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "df57feef-dccd-4170-83c1-50e2f917a660",
+ "metadata": {
+ "tags": [],
+ "id": "df57feef-dccd-4170-83c1-50e2f917a660",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "fa6d0858-4f99-4110-ecd2-af012c11e2dd"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "{'text': \"[INST] Summarize the architecture of artificial neural networksHere's some context: Artificial neural networks have input layers, hidden layers, and output layers. Each layer is composed of artificial neurons or units. In a fully connected network, each neuron receives input from the previous layer or the input layer. The output of one neuron becomes the input for other neurons in the next layer. The final layer produces the network's output. [/INST] Artificial neural networks consist of input, hidden, and output layers. Each layer contains artificial neurons or units. Neurons in a layer receive input from the previous layer or the input layer. The output of one neuron becomes the input for other neurons in the next layer. The final layer produces the network's output.\"}\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(dataset_train[110])\n",
+ "#print(dataset)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66cc3398-53ac-40a0-9c01-5cb5f02e0bd8",
+ "metadata": {
+ "id": "66cc3398-53ac-40a0-9c01-5cb5f02e0bd8"
+ },
+ "source": [
+ "Similarly we will apply the prompt template to the validation and test splits too."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "69930bd2-f847-433d-8144-c7a2fa732b15",
+ "metadata": {
+ "tags": [],
+ "id": "69930bd2-f847-433d-8144-c7a2fa732b15",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81,
+ "referenced_widgets": [
+ "6eb64758cd9f4921b69655868c428a0c",
+ "b1129d71adf643e8b75089e43a29230e",
+ "7eecd26c38204a6ab360c456a860f69c",
+ "ceb3aeafa97f478ca7ba56cc5b90990b",
+ "7abdc553306c4ce59a9d9642d307d7c1",
+ "7d9335a47bfb43a99bb13311d4e6088d",
+ "c4ba4d02009249b382ba2aa528122ab6",
+ "1dd54e75068b4038af0d9fe75ceb2c68",
+ "f7524f28fdaf4bc993dad499312165e4",
+ "6e3df06c2b3649e69933b740c8edf7e9",
+ "820dd3f57b4e457b95da525e00400d22",
+ "53f5043b8e0b4842bba04f9d0d2f34b9",
+ "38d06ba36cc649d093117b9863178f2d",
+ "aeb29a2b58c04632a4b016e470aed464",
+ "0245b6685d7645b29bad2288899dab52",
+ "bfb2b962a6404adb985f033576334d89",
+ "832335249b154b939082e8fe78417dc1",
+ "64a44b5e587a4784a87f824858a775df",
+ "fac8cab862614352a01cae3b25295fb3",
+ "12d2107b4c5a40b591bd8dbb2912ab30",
+ "2f4e81a69d344f3691045128fbe03fea",
+ "ff8d6446790f406995c73120cd6c5b85"
+ ]
+ },
+ "outputId": "3867b72a-1f80-4760-892f-0c0354b7f429"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map: 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "6eb64758cd9f4921b69655868c428a0c"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map: 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "53f5043b8e0b4842bba04f9d0d2f34b9"
+ }
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "dataset_val = dataset_val.map(template_dataset, remove_columns=list(dataset_shuffled.features))\n",
+ "dataset_test = dataset_test.map(template_dataset, remove_columns=list(dataset_shuffled.features))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "print(dataset_train)\n",
+ "print(dataset_val)\n",
+ "print(dataset_test)"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "yjDNzuNT0h02",
+ "outputId": "c9703dca-ab78-43cc-d01c-4d10c86c6f04"
+ },
+ "id": "yjDNzuNT0h02",
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Dataset({\n",
+ " features: ['text'],\n",
+ " num_rows: 684\n",
+ "})\n",
+ "Dataset({\n",
+ " features: ['text'],\n",
+ " num_rows: 147\n",
+ "})\n",
+ "Dataset({\n",
+ " features: ['text'],\n",
+ " num_rows: 147\n",
+ "})\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7e5b558-0dfc-43de-968a-0865f7d35c4b",
+ "metadata": {
+ "id": "d7e5b558-0dfc-43de-968a-0865f7d35c4b"
+ },
+ "source": [
+ "### Tokenization and Preparing the Input"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40a283c3-0209-4a3a-a26c-875c2e0b9bf5",
+ "metadata": {
+ "id": "40a283c3-0209-4a3a-a26c-875c2e0b9bf5"
+ },
+ "source": [
+ "#### Tokenization\n",
+ "\n",
+ "Before we can use the dataset for training, we first need to tokenize the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "92077d4b-bceb-4b5a-81a4-74022d1ec96e",
+ "metadata": {
+ "tags": [],
+ "id": "92077d4b-bceb-4b5a-81a4-74022d1ec96e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49,
+ "referenced_widgets": [
+ "2a5bdc5b69b84c7a908b3af9716ce886",
+ "c30ae73718d64bbea44cdac8134bfb17",
+ "ee1e94300fdb4d0db6258689e1e2fde0",
+ "5dd6a06280194b65bf7814ec50f90814",
+ "465d9580db1a4d4495293a53ac2bfe0a",
+ "38309776c56542fd9f98267456213aa8",
+ "c81658d8deb34a05a0ac14bc8d30e867",
+ "00ac5f944134458aa95ef4ee8eb1da74",
+ "c9a6b2cafed345a6845f57bfc2b3b360",
+ "f84a56a4283f416daa9557896798561f",
+ "4c2db47594fc4e11ae97e33fb404529d"
+ ]
+ },
+ "outputId": "60690aab-c329-40e1-fb31-3e906e08c291"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/684 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "2a5bdc5b69b84c7a908b3af9716ce886"
+ }
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "def tokenize_function(examples):\n",
+ " return tokenizer(examples[\"text\"])\n",
+ "\n",
+ "dataset_train_tokenized = dataset_train.map(\n",
+ " tokenize_function,\n",
+ " batched=True,\n",
+ " num_proc=4,\n",
+ " remove_columns=dataset_train.features,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2521c5e7-8976-473a-b7ce-e5bd1b454ab6",
+ "metadata": {
+ "tags": [],
+ "id": "2521c5e7-8976-473a-b7ce-e5bd1b454ab6",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "e9bbd65d-d9b1-4336-ceec-3b35281d40a5"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Dataset info: Dataset({\n",
+ " features: ['input_ids', 'attention_mask'],\n",
+ " num_rows: 684\n",
+ "})\n",
+ "Length of input_ids: 91\n",
+ "Sample input: \n",
+ " {'input_ids': [1, 1, 29961, 25580, 29962, 6991, 3034, 675, 278, 18066, 267, 297, 6483, 6509, 10605, 29915, 29879, 777, 3030, 29901, 21784, 6509, 756, 1754, 7282, 3061, 4564, 4110, 297, 5164, 4235, 29892, 541, 727, 526, 1603, 777, 18066, 267, 393, 817, 304, 367, 20976, 29889, 2266, 526, 777, 310, 278, 1667, 18066, 267, 297, 6483, 6509, 29901, 518, 29914, 25580, 29962, 450, 18066, 267, 297, 6483, 6509, 3160, 848, 20847, 3097, 29892, 26845, 7788, 29892, 931, 29899, 25978, 292, 6694, 29892, 6613, 3097, 5626, 29892, 322, 975, 29888, 5367, 29889, 2], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Dataset info: \", dataset_train_tokenized)\n",
+ "print(\"Length of input_ids: \", len(dataset_train_tokenized['input_ids'][0]))\n",
+ "print(\"Sample input: \\n\", dataset_train_tokenized[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "967dee0e-3fa3-4388-a32e-6a3cf118bccb",
+ "metadata": {
+ "id": "967dee0e-3fa3-4388-a32e-6a3cf118bccb"
+ },
+ "source": [
+ "We can see that after tokenization, we now have input_ids (which contains the id corresponding to a token (subword), and the attention mask, the attention mask tells the model which token to ignore (e.g. padding). We also shown the input_ids length of the first sample, which in this case is 341 (token ids)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4942aa44-4850-45f1-9a00-932a9ba3d9a1",
+ "metadata": {
+ "id": "4942aa44-4850-45f1-9a00-932a9ba3d9a1"
+ },
+ "source": [
+ "We will do the same tokenization on our validation dataset and test dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "617a9913-45d2-4bde-917a-e39df9cb291c",
+ "metadata": {
+ "tags": [],
+ "id": "617a9913-45d2-4bde-917a-e39df9cb291c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81,
+ "referenced_widgets": [
+ "821eb82c1d2845528f57067e4348e6df",
+ "f446ada26bf147f6b7315a999210c57c",
+ "27e58dc4b5454c57b9ba1c736e60aad5",
+ "d262b5f3fa8944ed9cdefc30b5568fa6",
+ "537c7999244b4bebbadd16775f003df0",
+ "3196e93b2f894a23a99c5c06f33d3933",
+ "786333721f9c4781b043d4b607d6cf70",
+ "003e583e436f410695ffb47a08efef7f",
+ "3cd402cc8b384a1dbbb6e8d5294c8d02",
+ "2f234414fcd1469cbd83b84fa715a05e",
+ "8bfd38742aee4890ba94850b1cc80a4f",
+ "2a4405849f53493e91c9e398e1b2e236",
+ "9b8e12f3cde04c0e8c78f97c6ade4c05",
+ "2ce80b73a684484587802a9c31a564f1",
+ "ca663a9448474b0bb4e6a7d537a1d609",
+ "af4dd475d48e450f910f503bfd188860",
+ "0c15c1724b3d4eff9b042c51b681b8a2",
+ "ce09abf0f62b41cea3243cc7f9fd9a5f",
+ "2833f29f39394e658924008787a46d4b",
+ "a060819c5b1e4f0193d7a0211090d911",
+ "a527c7646f224dd287ae29221a86bfd5",
+ "fa2a2add1e8145f0b309c6f4f8346df7"
+ ]
+ },
+ "outputId": "a4760d7d-7eea-42ff-eda7-38168393c73f"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "821eb82c1d2845528f57067e4348e6df"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "2a4405849f53493e91c9e398e1b2e236"
+ }
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "dataset_val_tokenized = dataset_val.map(\n",
+ " tokenize_function,\n",
+ " batched=True, # default batch size is 1000\n",
+ " num_proc=4,\n",
+ " remove_columns=dataset_val.features,\n",
+ ")\n",
+ "\n",
+ "dataset_test_tokenized = dataset_test.map(\n",
+ " tokenize_function,\n",
+ " batched=True,\n",
+ " num_proc=4,\n",
+ " remove_columns=dataset_test.features,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a143a35f-901b-4543-bd1b-2b31e62f3fc4",
+ "metadata": {
+ "id": "a143a35f-901b-4543-bd1b-2b31e62f3fc4"
+ },
+ "source": [
+ "Now let's prepare the input data to the moodel. As you can see above, typically the length of the token ids (input_ids) are few hundred tokens long. However, Llama model typically have 2048 or 4096 context window. To use the data more efficiently, we use a technique called packing: instead of having one text per sample in the batch and then padding to either the longest text or the maximal context of the model, we concatenate a lot of texts with a EOS token in between and cut chunks of the context size to fill the batch without any padding.\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cb53e5ba-f34a-46bc-8f6b-0a0414a97bd3",
+ "metadata": {
+ "id": "cb53e5ba-f34a-46bc-8f6b-0a0414a97bd3"
+ },
+ "source": [
+ "The code below help us find the maximum context window of the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "310776bb-8f44-4199-925a-031d271c53bd",
+ "metadata": {
+ "tags": [],
+ "id": "310776bb-8f44-4199-925a-031d271c53bd",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "ff6600f0-f152-418b-aca5-64bbf0aedada"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Found max context lenth: 4096 in max_position_embeddings\n",
+ "Maximum Context length: 4096\n"
+ ]
+ }
+ ],
+ "source": [
+ "def get_max_context_length(model):\n",
+ "\n",
+ " conf = model.config\n",
+ " max_length = None\n",
+ "\n",
+ " for length_setting in [\"n_positions\", \"max_position_embeddings\", \"seq_length\"]:\n",
+ " max_length = getattr(model.config, length_setting, None)\n",
+ " if max_length:\n",
+ " print(f\"Found max context lenth: {max_length} in {length_setting}\")\n",
+ " break\n",
+ " if not max_length:\n",
+ " max_length = 1024\n",
+ " print(f\"Using default max context length: {max_length}\")\n",
+ "\n",
+ " return max_length\n",
+ "\n",
+ "max_context_length = get_max_context_length(model)\n",
+ "print('Maximum Context length: ', max_context_length)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f75a8059-64c8-41dd-a083-4171dcb4cd7c",
+ "metadata": {
+ "id": "f75a8059-64c8-41dd-a083-4171dcb4cd7c"
+ },
+ "source": [
+ "The following functions concatenate a batch of samples, and then divide the concatenated sample into chunks of context size. Also we also need to create 'labels' in the input dataset, which tells the model what is the token to be predicted. Shifting the inputs and labels to align them happens inside the model, so our labels are just the exact copy of the input_ids.\n",
+ "\n",
+ "In the code below, we use a context_length of 512 instad of the maximum 4096, as we have limited gpu memory and using a larger context length will result in Out of Memory error even with batch size of 1."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bd6d2b52-fdec-4c36-9be4-c9922dcb62f3",
+ "metadata": {
+ "tags": [],
+ "id": "bd6d2b52-fdec-4c36-9be4-c9922dcb62f3"
+ },
+ "outputs": [],
+ "source": [
+ "context_length = 512\n",
+ "# context_length = max_context_length\n",
+ "\n",
+ "def group_texts(examples):\n",
+ "\n",
+ " # Concatenate all texts.\n",
+ " concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}\n",
+ " total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
+ " # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
+ " # customize this part to your needs.\n",
+ " if total_length >= context_length:\n",
+ " total_length = (total_length // context_length) * context_length\n",
+ " # Split by chunks of context length.\n",
+ " result = {\n",
+ " k: [t[i : i + context_length] for i in range(0, total_length, context_length)]\n",
+ " for k, t in concatenated_examples.items()\n",
+ " }\n",
+ " result[\"labels\"] = result[\"input_ids\"].copy()\n",
+ " return result\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "de68071b-2cc9-4931-abbc-cb495c83f538",
+ "metadata": {
+ "tags": [],
+ "id": "de68071b-2cc9-4931-abbc-cb495c83f538",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 113,
+ "referenced_widgets": [
+ "c10a1824b4964aadb2cba95d85c64cde",
+ "3acd9492f1ab4b0a89bbcc587ff6ebfa",
+ "1422dd0d7da342a19786a8e60f00a463",
+ "90d29862ac6a4686bb252daded081bde",
+ "3be5f0ddab7c475c979e7826b82e3c9a",
+ "41d493b1a90c421fa4db6e1585067bbd",
+ "3b4a622702b748e293cd6db9381acad6",
+ "627cb0ab7acc4278988e4b8a6509d1a2",
+ "9c354a9dc9b742be90a1deb9579f1be2",
+ "15a848cb1a2c48b5ac3b8f1376d15ed7",
+ "7ddf72e5b1154db5b4555191c5346bbb",
+ "71ed459b656f4dc3a5749213894e306c",
+ "c405d7e18f374a3b94e9dbbd650c311f",
+ "8d1818d9f1b94d1abc8a7b699beac5c4",
+ "4d15938847a74482ae2c6fa1fc38822f",
+ "9852573b36bd41f789cecb5906889131",
+ "f599fc9873c848cd892878bed113fe4b",
+ "d67f8a418fdb40c4ac6fc78e3f24f408",
+ "ec25383094b4470f812d1f2feaa0430a",
+ "53266e2619f34c439972f702f40a14fe",
+ "95d5043ad4bf40f68ad3583715213c8a",
+ "3023427cf5ff412ba27dacb274f2f3a8",
+ "7d6f59c3384248ba8bcd17bd507813dd",
+ "0defae97c2784f67865153860c57d2d0",
+ "77a08c827ec547e1ab12571c38cb40a0",
+ "7f812718c13f40f1ab59249eb5053655",
+ "398f4c2e4fe34a5cb06088dc03c72e0d",
+ "401f4e5fa90e4f128b8bc7afec034200",
+ "ef7b2b94875b42819079c32f57e0f04b",
+ "716f95a5bd4c46ff8e8ab0d2f343651c",
+ "aca2b090d0cf42b49a1e52cc5e52ee94",
+ "6e92f1e49d574a668177a61bab778415",
+ "f9f640dc53c54086ad9f2bb28a7170c0"
+ ]
+ },
+ "outputId": "29fa1150-d262-4244-f811-3aeca933bd85"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/684 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "c10a1824b4964aadb2cba95d85c64cde"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "71ed459b656f4dc3a5749213894e306c"
+ }
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "Map (num_proc=4): 0%| | 0/147 [00:00, ? examples/s]"
+ ],
+ "application/vnd.jupyter.widget-view+json": {
+ "version_major": 2,
+ "version_minor": 0,
+ "model_id": "7d6f59c3384248ba8bcd17bd507813dd"
+ }
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "dataset_train_final = dataset_train_tokenized.map(group_texts, batched=True, num_proc=4)\n",
+ "dataset_val_final = dataset_val_tokenized.map(group_texts, batched=True, num_proc=4)\n",
+ "dataset_test_final = dataset_test_tokenized.map(group_texts, batched=True, num_proc=4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ceafcf63-dbb1-4c60-8a83-ef3417b8ac19",
+ "metadata": {
+ "id": "ceafcf63-dbb1-4c60-8a83-ef3417b8ac19"
+ },
+ "source": [
+ "Now let's examine the dataset_train_final and we can see that all the samples are of lenghth equal to the specified context window."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6b28c5b2-4137-4dd6-b071-5894627cc917",
+ "metadata": {
+ "tags": [],
+ "id": "6b28c5b2-4137-4dd6-b071-5894627cc917",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "dc517878-c737-41fd-af09-8959ad63c207"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['input_ids', 'attention_mask', 'labels'],\n",
+ " num_rows: 246\n",
+ "})"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 28
+ }
+ ],
+ "source": [
+ "dataset_train_final"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "dataset_val_final"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "3UE0VWLvk391",
+ "outputId": "3de4fbbb-9e52-42cc-84e5-36df9e4fbaed"
+ },
+ "id": "3UE0VWLvk391",
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "Dataset({\n",
+ " features: ['input_ids', 'attention_mask', 'labels'],\n",
+ " num_rows: 50\n",
+ "})"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 29
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7623184b-18b0-4dfd-84be-2f2750872c77",
+ "metadata": {
+ "tags": [],
+ "id": "7623184b-18b0-4dfd-84be-2f2750872c77",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "9a922526-f2f5-4364-ec51-d78028faa32e"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "512\n",
+ "512\n",
+ "512\n",
+ "512\n",
+ "512\n"
+ ]
+ }
+ ],
+ "source": [
+ "for sample in dataset_train_final['input_ids'][:5]:\n",
+ " print(len(sample))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b8358ebb-45eb-48b9-93b5-7cb4341f62e4",
+ "metadata": {
+ "id": "b8358ebb-45eb-48b9-93b5-7cb4341f62e4"
+ },
+ "source": [
+ "Since we have done all the heavy lifting of preprocessing the data in our codes, we just use a simple default data collator which basically just pass the dictionary-like input to the model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "376d35d2-d3e2-4aed-9bb5-08606cddf7ad",
+ "metadata": {
+ "tags": [],
+ "id": "376d35d2-d3e2-4aed-9bb5-08606cddf7ad"
+ },
+ "outputs": [],
+ "source": [
+ "data_collator = default_data_collator"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bd17bc21-0252-4436-a462-924e22934286",
+ "metadata": {
+ "id": "bd17bc21-0252-4436-a462-924e22934286"
+ },
+ "source": [
+ "## Setup the PEFT/LoRA model for Fine-Tuning\n",
+ "\n",
+ "You need to set up the PEFT/LoRA model for fine-tuning with a new layer/parameter adapter. Using PEFT/LoRA, you are freezing the underlying LLM and only training the adapter. Have a look at the LoRA configuration below. Note the rank $r$ hyper-parameter, which defines the rank/dimension of the adapter to be trained.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "79bbcc28-be35-4e17-a6ec-d5e5d7695c80",
+ "metadata": {
+ "tags": [],
+ "id": "79bbcc28-be35-4e17-a6ec-d5e5d7695c80",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "043606af-23d3-4a06-8538-b37dab5c038f"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "trainable params: 4,194,304 || all params: 6,742,609,920 || trainable%: 0.06220594176090199\n"
+ ]
+ }
+ ],
+ "source": [
+ "model.train()\n",
+ "\n",
+ "def create_peft_config(model):\n",
+ " from peft import (\n",
+ " get_peft_model,\n",
+ " LoraConfig,\n",
+ " TaskType,\n",
+ " prepare_model_for_kbit_training,\n",
+ " )\n",
+ "\n",
+ " peft_config = LoraConfig(\n",
+ " task_type=TaskType.CAUSAL_LM,\n",
+ " inference_mode=False,\n",
+ " r=8,\n",
+ " lora_alpha=32,\n",
+ " lora_dropout=0.05,\n",
+ " target_modules = [\"q_proj\", \"v_proj\"]\n",
+ " )\n",
+ "\n",
+ " # prepare int-8 model for training\n",
+ " model = prepare_model_for_kbit_training(model)\n",
+ " model = get_peft_model(model, peft_config)\n",
+ " model.print_trainable_parameters()\n",
+ "\n",
+ " return model, peft_config\n",
+ "\n",
+ "# create peft config\n",
+ "model, lora_config = create_peft_config(model)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86ed071c-3ab7-4e1c-b032-dc3429907002",
+ "metadata": {
+ "id": "86ed071c-3ab7-4e1c-b032-dc3429907002"
+ },
+ "source": [
+ "If you look at the trainable prarameters, there are only about 4 million parameters, comparaed to about 6.7 billion parameters of the entire model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8bc3ead9-0890-4526-90d1-1e98909430dc",
+ "metadata": {
+ "tags": [],
+ "id": "8bc3ead9-0890-4526-90d1-1e98909430dc",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "outputId": "6ca70618-595f-4b4c-994b-ed066dd6a4ae"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "PeftModelForCausalLM(\n",
+ " (base_model): LoraModel(\n",
+ " (model): LlamaForCausalLM(\n",
+ " (model): LlamaModel(\n",
+ " (embed_tokens): Embedding(32000, 4096)\n",
+ " (layers): ModuleList(\n",
+ " (0-31): 32 x LlamaDecoderLayer(\n",
+ " (self_attn): LlamaAttention(\n",
+ " (q_proj): lora.Linear8bitLt(\n",
+ " (base_layer): Linear8bitLt(in_features=4096, out_features=4096, bias=False)\n",
+ " (lora_dropout): ModuleDict(\n",
+ " (default): Dropout(p=0.05, inplace=False)\n",
+ " )\n",
+ " (lora_A): ModuleDict(\n",
+ " (default): Linear(in_features=4096, out_features=8, bias=False)\n",
+ " )\n",
+ " (lora_B): ModuleDict(\n",
+ " (default): Linear(in_features=8, out_features=4096, bias=False)\n",
+ " )\n",
+ " (lora_embedding_A): ParameterDict()\n",
+ " (lora_embedding_B): ParameterDict()\n",
+ " )\n",
+ " (k_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)\n",
+ " (v_proj): lora.Linear8bitLt(\n",
+ " (base_layer): Linear8bitLt(in_features=4096, out_features=4096, bias=False)\n",
+ " (lora_dropout): ModuleDict(\n",
+ " (default): Dropout(p=0.05, inplace=False)\n",
+ " )\n",
+ " (lora_A): ModuleDict(\n",
+ " (default): Linear(in_features=4096, out_features=8, bias=False)\n",
+ " )\n",
+ " (lora_B): ModuleDict(\n",
+ " (default): Linear(in_features=8, out_features=4096, bias=False)\n",
+ " )\n",
+ " (lora_embedding_A): ParameterDict()\n",
+ " (lora_embedding_B): ParameterDict()\n",
+ " )\n",
+ " (o_proj): Linear8bitLt(in_features=4096, out_features=4096, bias=False)\n",
+ " (rotary_emb): LlamaRotaryEmbedding()\n",
+ " )\n",
+ " (mlp): LlamaMLP(\n",
+ " (gate_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)\n",
+ " (up_proj): Linear8bitLt(in_features=4096, out_features=11008, bias=False)\n",
+ " (down_proj): Linear8bitLt(in_features=11008, out_features=4096, bias=False)\n",
+ " (act_fn): SiLUActivation()\n",
+ " )\n",
+ " (input_layernorm): LlamaRMSNorm()\n",
+ " (post_attention_layernorm): LlamaRMSNorm()\n",
+ " )\n",
+ " )\n",
+ " (norm): LlamaRMSNorm()\n",
+ " )\n",
+ " (lm_head): Linear(in_features=4096, out_features=32000, bias=False)\n",
+ " )\n",
+ " )\n",
+ ")"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 31
+ }
+ ],
+ "source": [
+ "model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ccc5b40-95a1-4e06-aa3d-67b2b09a6265",
+ "metadata": {
+ "id": "0ccc5b40-95a1-4e06-aa3d-67b2b09a6265"
+ },
+ "source": [
+ "## Define the Trainer and Training Arguments\n",
+ "\n",
+ "We can now define training arguments and create Trainer instance. If you are using Ampere GPU (e.g. NVIDIA A10), then you can set bf16 to True to use bfloat16 for mixed precision computation.\n",
+ "\n",
+ "*Note: Due to long training time (approximately 1 to 2 hours) to fine-tune the model for it to have decent performance, for this lab, we just train for a single step due to time constraint. If you have access to GPUs such a A10G or others, you can train for more steps e.g. 100 steps, and set the logging_steps=10 and save_steps=10 to log and save every 10 steps.*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "10853496-3414-4176-875c-788e5707b8e4",
+ "metadata": {
+ "tags": [],
+ "id": "10853496-3414-4176-875c-788e5707b8e4"
+ },
+ "outputs": [],
+ "source": [
+ "# specify where to write the checkpoint to\n",
+ "output_dir = \"train_out_dir\"\n",
+ "\n",
+ "# Define training args\n",
+ "training_args = TrainingArguments(\n",
+ " output_dir=output_dir,\n",
+ " overwrite_output_dir=True,\n",
+ " auto_find_batch_size=False,\n",
+ " per_device_train_batch_size=1,\n",
+ " per_device_eval_batch_size=2,\n",
+ " gradient_accumulation_steps=4,\n",
+ " gradient_checkpointing=True,\n",
+ " bf16=False, # Use BF16 if available (e.g. on Ampere GPU)\n",
+ " # logging strategy\n",
+ " logging_dir=f\"{output_dir}/logs\",\n",
+ " logging_strategy=\"steps\",\n",
+ " # logging_steps=10,\n",
+ " logging_steps=10,\n",
+ " # saving strategy\n",
+ " save_strategy=\"steps\",\n",
+ " #save_steps=10,\n",
+ " save_steps=10,\n",
+ " evaluation_strategy ='steps',\n",
+ " optim=\"adamw_torch_fused\",\n",
+ " load_best_model_at_end=True,\n",
+ " max_steps=200\n",
+ ")\n",
+ "\n",
+ " # Create Trainer instance\n",
+ "trainer = Trainer(\n",
+ " model=model,\n",
+ " args=training_args,\n",
+ " train_dataset=dataset_train_final,\n",
+ " eval_dataset=dataset_val_final,\n",
+ " data_collator=data_collator,\n",
+ ")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b3f26e1a-ed52-422c-a3c3-f3495208c87e",
+ "metadata": {
+ "tags": [],
+ "id": "b3f26e1a-ed52-422c-a3c3-f3495208c87e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "outputId": "a1c17cc8-5778-4f73-b2fd-606f68bcd01d"
+ },
+ "outputs": [
+ {
+ "metadata": {
+ "tags": null
+ },
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [ 80/200 22:48 < 35:05, 0.06 it/s, Epoch 1.28/4]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 10 | \n",
+ " 2.041100 | \n",
+ " 1.894824 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 1.784500 | \n",
+ " 1.614028 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 1.487900 | \n",
+ " 1.455886 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 1.400600 | \n",
+ " 1.362805 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 1.339200 | \n",
+ " 1.303091 | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 1.300000 | \n",
+ " 1.256285 | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " 1.255700 | \n",
+ " 1.216590 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "metadata": {
+ "tags": null
+ },
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [200/200 58:59, Epoch 3/4]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 10 | \n",
+ " 2.041100 | \n",
+ " 1.894824 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 1.784500 | \n",
+ " 1.614028 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 1.487900 | \n",
+ " 1.455886 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 1.400600 | \n",
+ " 1.362805 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 1.339200 | \n",
+ " 1.303091 | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 1.300000 | \n",
+ " 1.256285 | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " 1.255700 | \n",
+ " 1.216590 | \n",
+ "
\n",
+ " \n",
+ " 80 | \n",
+ " 1.150800 | \n",
+ " 1.181747 | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " 1.175700 | \n",
+ " 1.151433 | \n",
+ "
\n",
+ " \n",
+ " 100 | \n",
+ " 1.148600 | \n",
+ " 1.126270 | \n",
+ "
\n",
+ " \n",
+ " 110 | \n",
+ " 1.083100 | \n",
+ " 1.106496 | \n",
+ "
\n",
+ " \n",
+ " 120 | \n",
+ " 1.075300 | \n",
+ " 1.090339 | \n",
+ "
\n",
+ " \n",
+ " 130 | \n",
+ " 1.081900 | \n",
+ " 1.076817 | \n",
+ "
\n",
+ " \n",
+ " 140 | \n",
+ " 1.029900 | \n",
+ " 1.066747 | \n",
+ "
\n",
+ " \n",
+ " 150 | \n",
+ " 1.034400 | \n",
+ " 1.057581 | \n",
+ "
\n",
+ " \n",
+ " 160 | \n",
+ " 1.055500 | \n",
+ " 1.050728 | \n",
+ "
\n",
+ " \n",
+ " 170 | \n",
+ " 1.042700 | \n",
+ " 1.044938 | \n",
+ "
\n",
+ " \n",
+ " 180 | \n",
+ " 1.039200 | \n",
+ " 1.041671 | \n",
+ "
\n",
+ " \n",
+ " 190 | \n",
+ " 0.981000 | \n",
+ " 1.039009 | \n",
+ "
\n",
+ " \n",
+ " 200 | \n",
+ " 0.978100 | \n",
+ " 1.038632 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n",
+ "/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
+ ]
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "TrainOutput(global_step=200, training_loss=1.2242571496963501, metrics={'train_runtime': 3556.5472, 'train_samples_per_second': 0.225, 'train_steps_per_second': 0.056, 'total_flos': 1.6248515592192e+16, 'train_loss': 1.2242571496963501, 'epoch': 3.25})"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 33
+ }
+ ],
+ "source": [
+ "# Start training\n",
+ "\n",
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "93524441-36a1-4f7e-8307-b855e68c5c14",
+ "metadata": {
+ "tags": [],
+ "id": "93524441-36a1-4f7e-8307-b855e68c5c14",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 178
+ },
+ "outputId": "b6424c6a-3ff9-47e9-9a7c-f0137908a733"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stderr",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/bitsandbytes/autograd/_functions.py:322: UserWarning: MatMul8bitLt: inputs will be cast from torch.float32 to float16 during quantization\n",
+ " warnings.warn(f\"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization\")\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ ""
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [25/25 00:29]\n",
+ "
\n",
+ " "
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "{'eval_loss': 1.0386323928833008,\n",
+ " 'eval_runtime': 30.7096,\n",
+ " 'eval_samples_per_second': 1.628,\n",
+ " 'eval_steps_per_second': 0.814,\n",
+ " 'epoch': 3.25}"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 34
+ }
+ ],
+ "source": [
+ "model.eval()\n",
+ "trainer.evaluate(eval_dataset=dataset_val_final)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "825728df-3d1e-4beb-876e-8de547077cfa",
+ "metadata": {
+ "tags": [],
+ "id": "825728df-3d1e-4beb-876e-8de547077cfa"
+ },
+ "source": [
+ "### Save the Trained model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9d0595e2-555a-469d-9381-f2fb3c165873",
+ "metadata": {
+ "tags": [],
+ "id": "9d0595e2-555a-469d-9381-f2fb3c165873"
+ },
+ "outputs": [],
+ "source": [
+ "#save_dir = 'lora_model_output'\n",
+ "save_dir = gpath+'lora_model_output'\n",
+ "\n",
+ "model.save_pretrained(save_dir)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "77c2c46e-964b-4599-8943-6850aabf3af7",
+ "metadata": {
+ "id": "77c2c46e-964b-4599-8943-6850aabf3af7"
+ },
+ "source": [
+ "### Load the PEFT Model\n",
+ "\n",
+ "Uncomment the following to download fine-tuned LoRA weights.\n",
+ "\n",
+ "You should **restart the session to clear the GPU memory** before continuning with the next step."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "\n",
+ "\n",
+ "---\n",
+ "\n",
+ "\n",
+ "##Adding lora weights to the model\n",
+ "\n",
+ "---\n",
+ "this is section is to load and apply pre-train lora weights instead of re-training with each new colab session\n"
+ ],
+ "metadata": {
+ "id": "12CkesMf9uwp"
+ },
+ "id": "12CkesMf9uwp"
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')\n",
+ "gpath=\"/content/drive/MyDrive/Colab_Notebooks/NYP_AIML/shared_it110/\""
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "PXgqaOq6oNYv",
+ "outputId": "601f1b17-2e32-4c10-b5ef-5074b7636a90"
+ },
+ "id": "PXgqaOq6oNYv",
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Mounted at /content/drive\n"
+ ]
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a6bca34f-1e7c-4df6-acf3-d1a534615c6e",
+ "metadata": {
+ "tags": [],
+ "id": "a6bca34f-1e7c-4df6-acf3-d1a534615c6e",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 145,
+ "referenced_widgets": [
+ "3d5ff5586a5b4d459d76b40f93ceb550",
+ "b540e844c7bb4c9588fc28ca0e940db6",
+ "a68543abe2fe47e09458456d52230cd1",
+ "c1e993aa8aa94b9b93490d0701a95f22",
+ "3eb262ddd3d240e4bce19b118fc4156b",
+ "5a9dc8f2efba45ca96e41b3a65f9d032",
+ "1c4b6fdc10ad4938adfbdf54f612b0cd",
+ "7bb36017efcd43a38670ae1c2fdfe54c",
+ "66f4437d89c34b39861fcd4bd6f04160",
+ "017b52aa53474bc5993837d496030868",
+ "3c045577b95a4265b717c9cf5d7e0595",
+ "f5336c99982548ca8fbccd4db6422da8",
+ "4fe12803d0254d64b9cf87fc05fbbb74",
+ "629393a883f94e9fa2954ef463d8f446",
+ "3c2e19dd0535432890a919e2b03f7e10",
+ "d37cd988b88343a4a9907d31e7dcb8fa",
+ "11254aa3fa164f6e8a7c2b7bbc44e156",
+ "e53d5e42202e4042b73b912b87093dc9",
+ "ae52498812af46dc929309c806630395",
+ "aaa21cc6e9904b8482ef9c2f64594084",
+ "537a1dafa2b7490f89901bd971da14c4",
+ "236d51ef1c274cb09151cebbb60bd4ef",
+ "e3a4f2db92c34e19a94815372f561e34",
+ "12876c2faee448d19fce67ac75d036d8",
+ "8746a6a91cd74292a54a947d9942f622",
+ "366ebd7b7238440cb2f0b4c4fa240c79",
+ "8466a756e16b4c719a916c2f4b74cbae",
+ "283b5a719dec458faf6060b5f7a262cf",
+ "b9b4474b1e524e08864cbb0df945e35a",
+ "fb0b3477fe944113a200034846c24b36",
+ "187e27f061a84066bfb3c6e79f9bc534",
+ "fa86373a4a2b4c98a034e65b1b502471"
+ ]
+ },
+ "outputId": "9f0dcdbf-f366-4bbf-ffff-8260f67df3c0"
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "VBox(children=(HTML(value='
Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. "
+ }
+ },
+ "012d0b97008247b9a03142cf26d0e381": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "PasswordModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "PasswordModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "PasswordView",
+ "continuous_update": true,
+ "description": "Token:",
+ "description_tooltip": null,
+ "disabled": false,
+ "layout": "IPY_MODEL_5446b40d53804682948236d4ba98cdd6",
+ "placeholder": "",
+ "style": "IPY_MODEL_21ea43357d7e4b2d8b2a3f12d199a3ce",
+ "value": ""
+ }
+ },
+ "7250673145e042cb8c952fdf3477f5a6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "CheckboxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "CheckboxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "CheckboxView",
+ "description": "Add token as git credential?",
+ "description_tooltip": null,
+ "disabled": false,
+ "indent": true,
+ "layout": "IPY_MODEL_eb24b1c2c039416a8b63910c9d254147",
+ "style": "IPY_MODEL_0e3de9ad4e1a4affbe73c1ee046c6105",
+ "value": true
+ }
+ },
+ "8688ae1d1fd544b39cd6b043bbf9e957": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ButtonModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ButtonView",
+ "button_style": "",
+ "description": "Login",
+ "disabled": false,
+ "icon": "",
+ "layout": "IPY_MODEL_ed850c64429740f5a9c624ba6a2a4060",
+ "style": "IPY_MODEL_43e5ac30013846e59bd4030e794190b1",
+ "tooltip": ""
+ }
+ },
+ "a13691db6f884feeab91a60df5f0e9a7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_22524832590147ee86f0ece7e4559664",
+ "placeholder": "",
+ "style": "IPY_MODEL_5133470b3e744f448a94db36c881bd8b",
+ "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
"
+ }
+ },
+ "a57267ffc803442ca85085b7a88c2933": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": "center",
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": "flex",
+ "flex": null,
+ "flex_flow": "column",
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": "50%"
+ }
+ },
+ "45b4e5284a1b4f4bb8b3e5f6746e3c46": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2b62002cf89442e5b5b1a5a5315a6db2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5446b40d53804682948236d4ba98cdd6": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "21ea43357d7e4b2d8b2a3f12d199a3ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "eb24b1c2c039416a8b63910c9d254147": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0e3de9ad4e1a4affbe73c1ee046c6105": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ed850c64429740f5a9c624ba6a2a4060": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "43e5ac30013846e59bd4030e794190b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ButtonStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ButtonStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "button_color": null,
+ "font_weight": ""
+ }
+ },
+ "22524832590147ee86f0ece7e4559664": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5133470b3e744f448a94db36c881bd8b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0013b3a66f06485e90b804db70b2054d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1d19e959ce4140b596dc72c9d57a193b",
+ "placeholder": "",
+ "style": "IPY_MODEL_badf45ea38774747ac770c65eb303a5d",
+ "value": "Connecting..."
+ }
+ },
+ "1d19e959ce4140b596dc72c9d57a193b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "badf45ea38774747ac770c65eb303a5d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5c6d035439414189bc5af05c7f65bb97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8b07392a7fcf49a0acf82d194456a22b",
+ "placeholder": "",
+ "style": "IPY_MODEL_9dbed28f31ea4ec9b02d4c02e323bd57",
+ "value": "Token is valid (permission: write)."
+ }
+ },
+ "711d15c6f8504b5db01c30d9bcd56b88": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_35846883e9594a789da8a543d4964f2e",
+ "placeholder": "",
+ "style": "IPY_MODEL_f3ad3dbf2df045688f734299b4ecc2cc",
+ "value": "Your token has been saved in your configured git credential helpers (store)."
+ }
+ },
+ "69baeff0cf2c47d9beb5776a632b4bd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b9154c984d884c36bb149c09dc661976",
+ "placeholder": "",
+ "style": "IPY_MODEL_0df6b38cecdb4285a3a32c21122ce738",
+ "value": "Your token has been saved to /root/.cache/huggingface/token"
+ }
+ },
+ "6b945dc35b884080be8b3eeaf1f715dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "LabelModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "LabelModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "LabelView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52b605e03c58484eb906bd4b92343a6b",
+ "placeholder": "",
+ "style": "IPY_MODEL_03b9c7c857284cdd85cec55f97d6e49f",
+ "value": "Login successful"
+ }
+ },
+ "8b07392a7fcf49a0acf82d194456a22b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9dbed28f31ea4ec9b02d4c02e323bd57": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "35846883e9594a789da8a543d4964f2e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f3ad3dbf2df045688f734299b4ecc2cc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b9154c984d884c36bb149c09dc661976": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0df6b38cecdb4285a3a32c21122ce738": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "52b605e03c58484eb906bd4b92343a6b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "03b9c7c857284cdd85cec55f97d6e49f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f98b9ca29b9a45a1abcf58d907b23c95": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_39fb17349a6140128582cb96a57b2bdf",
+ "IPY_MODEL_6368b72ef28b47378d33cb1d2fd91efd",
+ "IPY_MODEL_9c2921e684934c258d8e64a1f4b9bddf"
+ ],
+ "layout": "IPY_MODEL_4d90d15835264146b83e954aaae19898"
+ }
+ },
+ "39fb17349a6140128582cb96a57b2bdf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52a9d0657e374b85891062b39f9c2d7f",
+ "placeholder": "",
+ "style": "IPY_MODEL_68068380260446d3a8886c30b8753901",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "6368b72ef28b47378d33cb1d2fd91efd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7a77e368de634fc5a0ee757d9fa5ce9a",
+ "max": 1842767,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_bae61b69b6ec4a94b82b6ca3e5cf2c2d",
+ "value": 1842767
+ }
+ },
+ "9c2921e684934c258d8e64a1f4b9bddf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_15cc45631d7245e98f09bbd72b7fd76d",
+ "placeholder": "",
+ "style": "IPY_MODEL_70ab1778f27b4bc9807c0d066bc650c9",
+ "value": " 1.84M/1.84M [00:00<00:00, 21.5MB/s]"
+ }
+ },
+ "4d90d15835264146b83e954aaae19898": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "52a9d0657e374b85891062b39f9c2d7f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "68068380260446d3a8886c30b8753901": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7a77e368de634fc5a0ee757d9fa5ce9a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bae61b69b6ec4a94b82b6ca3e5cf2c2d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "15cc45631d7245e98f09bbd72b7fd76d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "70ab1778f27b4bc9807c0d066bc650c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ac9764c88fb94709b1c31c8d76f1e4fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_8852e322a20b41ed80245e20b400686c",
+ "IPY_MODEL_d1890894d6294e40a0cf1b94d37de336",
+ "IPY_MODEL_399b4b5f65304bee9c5fda521c3e1e92"
+ ],
+ "layout": "IPY_MODEL_47758f50ba93422ca6102ea7367c4579"
+ }
+ },
+ "8852e322a20b41ed80245e20b400686c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0b3b74a616ab436d87c7c85661578e06",
+ "placeholder": "",
+ "style": "IPY_MODEL_dba3000a932242cd9202c7d84d14356c",
+ "value": "config.json: 100%"
+ }
+ },
+ "d1890894d6294e40a0cf1b94d37de336": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2fd09f5873df4f078c3101083e9e097a",
+ "max": 614,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5dc0312fc86645178138cb434ef30e4e",
+ "value": 614
+ }
+ },
+ "399b4b5f65304bee9c5fda521c3e1e92": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f843ff91717b4fcf8543e78259b5c100",
+ "placeholder": "",
+ "style": "IPY_MODEL_e6aea13d4a5545768073dbd1b63e649d",
+ "value": " 614/614 [00:00<00:00, 38.5kB/s]"
+ }
+ },
+ "47758f50ba93422ca6102ea7367c4579": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0b3b74a616ab436d87c7c85661578e06": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dba3000a932242cd9202c7d84d14356c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2fd09f5873df4f078c3101083e9e097a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5dc0312fc86645178138cb434ef30e4e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f843ff91717b4fcf8543e78259b5c100": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e6aea13d4a5545768073dbd1b63e649d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4ad30818356a4831aeb5f41ad373703c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6e596ff129e44792992631801ff7e919",
+ "IPY_MODEL_c9a7bcbd0c29423db7a2207568bd0feb",
+ "IPY_MODEL_58cc7e029207431fa4fe0a335b20c7f3"
+ ],
+ "layout": "IPY_MODEL_ebf54891d0de44ceb720f9f1888148eb"
+ }
+ },
+ "6e596ff129e44792992631801ff7e919": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2235b5b8d7bf420eb6f66fac920c838f",
+ "placeholder": "",
+ "style": "IPY_MODEL_64550078b67b4cce9080106bfc8bfa9d",
+ "value": "model.safetensors.index.json: 100%"
+ }
+ },
+ "c9a7bcbd0c29423db7a2207568bd0feb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e9a3ea078e2a4744bacd5f2679e55b44",
+ "max": 26788,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_09667aae235b41258d8aff965dad9e03",
+ "value": 26788
+ }
+ },
+ "58cc7e029207431fa4fe0a335b20c7f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6006ba0913714f9cbe0e41ab2be67ef0",
+ "placeholder": "",
+ "style": "IPY_MODEL_11319cfbcb934813be6e377280587a6b",
+ "value": " 26.8k/26.8k [00:00<00:00, 1.71MB/s]"
+ }
+ },
+ "ebf54891d0de44ceb720f9f1888148eb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2235b5b8d7bf420eb6f66fac920c838f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "64550078b67b4cce9080106bfc8bfa9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "e9a3ea078e2a4744bacd5f2679e55b44": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "09667aae235b41258d8aff965dad9e03": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6006ba0913714f9cbe0e41ab2be67ef0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "11319cfbcb934813be6e377280587a6b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "8016c8bb47ac4c46bf02bafebe76701e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_df77eb2518a44b64b6bf806750d34e4b",
+ "IPY_MODEL_894a96fe541e424795f99e7066972934",
+ "IPY_MODEL_cdab7aa315c64134a91d83dfe3dbd7a4"
+ ],
+ "layout": "IPY_MODEL_c744ece1c6494d638c542a4bb7f30ba1"
+ }
+ },
+ "df77eb2518a44b64b6bf806750d34e4b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0bf136661f264d5b98a7e78a20f5e599",
+ "placeholder": "",
+ "style": "IPY_MODEL_27bcdbd694cc4e3da5281075ba360ff4",
+ "value": "Downloading shards: 100%"
+ }
+ },
+ "894a96fe541e424795f99e7066972934": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b4ac39a16869425bb93b95a4438f8fb9",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a3c5969b711941feb5bf77e133866c13",
+ "value": 2
+ }
+ },
+ "cdab7aa315c64134a91d83dfe3dbd7a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_693f723f0581465d86bfe89f99985b9e",
+ "placeholder": "",
+ "style": "IPY_MODEL_6da22882f25c45d8b84425994523d34a",
+ "value": " 2/2 [02:16<00:00, 62.97s/it]"
+ }
+ },
+ "c744ece1c6494d638c542a4bb7f30ba1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0bf136661f264d5b98a7e78a20f5e599": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "27bcdbd694cc4e3da5281075ba360ff4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b4ac39a16869425bb93b95a4438f8fb9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a3c5969b711941feb5bf77e133866c13": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "693f723f0581465d86bfe89f99985b9e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6da22882f25c45d8b84425994523d34a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fa4ee03a3fdd4341b7018fd78367da64": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f2c247c2188141308af3030a2a7b2ce5",
+ "IPY_MODEL_cb2b471f1eae4690be0469e205bcbf21",
+ "IPY_MODEL_2c16ee6f8e084917b09cfcc8f0d75f99"
+ ],
+ "layout": "IPY_MODEL_e93a9ee1038549eab8c0cb8100f7eba4"
+ }
+ },
+ "f2c247c2188141308af3030a2a7b2ce5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_72757d79dad2432fbad068a9ccfdc60e",
+ "placeholder": "",
+ "style": "IPY_MODEL_f48fda06bfeb4b6caa9679668d3bf296",
+ "value": "model-00001-of-00002.safetensors: 100%"
+ }
+ },
+ "cb2b471f1eae4690be0469e205bcbf21": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3f1da109ec094a118d21ea33ffedbf0a",
+ "max": 9976576152,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_01bcece012374ee19d9f9e227a2e46e7",
+ "value": 9976576152
+ }
+ },
+ "2c16ee6f8e084917b09cfcc8f0d75f99": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d3c298d1557647f29c3e588fdeaeacff",
+ "placeholder": "",
+ "style": "IPY_MODEL_bfb387ea2412412aa125f69878a565e9",
+ "value": " 9.98G/9.98G [01:39<00:00, 110MB/s]"
+ }
+ },
+ "e93a9ee1038549eab8c0cb8100f7eba4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "72757d79dad2432fbad068a9ccfdc60e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f48fda06bfeb4b6caa9679668d3bf296": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3f1da109ec094a118d21ea33ffedbf0a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "01bcece012374ee19d9f9e227a2e46e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d3c298d1557647f29c3e588fdeaeacff": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bfb387ea2412412aa125f69878a565e9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2c5d39da96814ae58fc8e4835d5f2ea3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2324a16327f548b693d36b917b2bbe58",
+ "IPY_MODEL_d1680554f1ef4d92ab6995249a9bddaa",
+ "IPY_MODEL_63f31301a9124e65b143ef453e880067"
+ ],
+ "layout": "IPY_MODEL_0069109da5544d399d217fdb271dee4b"
+ }
+ },
+ "2324a16327f548b693d36b917b2bbe58": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9038f1f8e7b941f099a7d6d5f591b8be",
+ "placeholder": "",
+ "style": "IPY_MODEL_a0f0178ed8314842a1286cacbab101d1",
+ "value": "model-00002-of-00002.safetensors: 100%"
+ }
+ },
+ "d1680554f1ef4d92ab6995249a9bddaa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b3cd9f87097b4f81bfa3b1050b773d7b",
+ "max": 3500296424,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_51a69c710c6247e596596638629d370e",
+ "value": 3500296424
+ }
+ },
+ "63f31301a9124e65b143ef453e880067": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c3e00004f3e8457a9318d2f4c860640a",
+ "placeholder": "",
+ "style": "IPY_MODEL_aab0a1d20c2a43ceb06d69bad9dbeb2d",
+ "value": " 3.50G/3.50G [00:37<00:00, 66.2MB/s]"
+ }
+ },
+ "0069109da5544d399d217fdb271dee4b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9038f1f8e7b941f099a7d6d5f591b8be": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a0f0178ed8314842a1286cacbab101d1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b3cd9f87097b4f81bfa3b1050b773d7b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "51a69c710c6247e596596638629d370e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c3e00004f3e8457a9318d2f4c860640a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "aab0a1d20c2a43ceb06d69bad9dbeb2d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f293837028a04cdcaf07e153ade198b5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_31c979007e4a4aa4b38fb27e117a981b",
+ "IPY_MODEL_d920553c637d4eae90056bd653d92eaf",
+ "IPY_MODEL_93ff9b475790411b91f19e2c2898e543"
+ ],
+ "layout": "IPY_MODEL_9610225ed941452d82e5d2d6b9f09bd0"
+ }
+ },
+ "31c979007e4a4aa4b38fb27e117a981b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_5497078199cc4edea681aa985ae719a2",
+ "placeholder": "",
+ "style": "IPY_MODEL_7890724decc845fa8fcf5dd92d792473",
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "d920553c637d4eae90056bd653d92eaf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bc450d5be9e64d24a610027d3d78a613",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f0fd19f04e1d4b9eb06b2093a0e5f3f0",
+ "value": 2
+ }
+ },
+ "93ff9b475790411b91f19e2c2898e543": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_86544f36ba7941ed8afc86576ee4acda",
+ "placeholder": "",
+ "style": "IPY_MODEL_240c368d4aa94f1093c9016cda6a5d41",
+ "value": " 2/2 [00:55<00:00, 25.61s/it]"
+ }
+ },
+ "9610225ed941452d82e5d2d6b9f09bd0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5497078199cc4edea681aa985ae719a2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7890724decc845fa8fcf5dd92d792473": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bc450d5be9e64d24a610027d3d78a613": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f0fd19f04e1d4b9eb06b2093a0e5f3f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "86544f36ba7941ed8afc86576ee4acda": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "240c368d4aa94f1093c9016cda6a5d41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a5030aa80b1346fba9d284edd5649a14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fa56b94ab7044878ada16c33f4a40b14",
+ "IPY_MODEL_03446ae76db3446ba5ad18cbc83bd0c0",
+ "IPY_MODEL_da4f6f4c589f4c2fbd2ad3c80ab8dee8"
+ ],
+ "layout": "IPY_MODEL_be3fdd612dfd45a289ddcf690ad94db1"
+ }
+ },
+ "fa56b94ab7044878ada16c33f4a40b14": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c2cbbc74357a461b8b7fc8627620e106",
+ "placeholder": "",
+ "style": "IPY_MODEL_6ad173e5742c473c88479df64bb478a0",
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "03446ae76db3446ba5ad18cbc83bd0c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_13652de222a44e50a18344292c78aaac",
+ "max": 188,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dcf5df3b8859495cb28481dbdad8b8c5",
+ "value": 188
+ }
+ },
+ "da4f6f4c589f4c2fbd2ad3c80ab8dee8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c8f1b4bb862249248876d14c43bebab8",
+ "placeholder": "",
+ "style": "IPY_MODEL_18bfd56904c244c88968acefdc0b3178",
+ "value": " 188/188 [00:00<00:00, 10.7kB/s]"
+ }
+ },
+ "be3fdd612dfd45a289ddcf690ad94db1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c2cbbc74357a461b8b7fc8627620e106": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6ad173e5742c473c88479df64bb478a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "13652de222a44e50a18344292c78aaac": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "dcf5df3b8859495cb28481dbdad8b8c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c8f1b4bb862249248876d14c43bebab8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "18bfd56904c244c88968acefdc0b3178": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "90873898d8fd4301bc61a7ebdeff53f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_940edf673458480784f5b56d69847a50",
+ "IPY_MODEL_476cf461e43a41169785bb362e44e6ca",
+ "IPY_MODEL_80683209979a4662b78e7202cd232c9d"
+ ],
+ "layout": "IPY_MODEL_b192ff37e9154891b82e1b55cbd5723f"
+ }
+ },
+ "940edf673458480784f5b56d69847a50": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6db2d0fa5d404e6c9b219c439427ea2c",
+ "placeholder": "",
+ "style": "IPY_MODEL_9a6f67ead4c44f67838a54596953e7c0",
+ "value": "Downloading readme: 100%"
+ }
+ },
+ "476cf461e43a41169785bb362e44e6ca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_dc94c117bae54c26b9e54a74a685c3b0",
+ "max": 363,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b594c951bcd24a8ab899c08e22d30422",
+ "value": 363
+ }
+ },
+ "80683209979a4662b78e7202cd232c9d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d2973460186e4177875ac71dba202bfc",
+ "placeholder": "",
+ "style": "IPY_MODEL_9796097006c14355911d008e55a34e02",
+ "value": " 363/363 [00:00<00:00, 26.8kB/s]"
+ }
+ },
+ "b192ff37e9154891b82e1b55cbd5723f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6db2d0fa5d404e6c9b219c439427ea2c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9a6f67ead4c44f67838a54596953e7c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "dc94c117bae54c26b9e54a74a685c3b0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b594c951bcd24a8ab899c08e22d30422": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d2973460186e4177875ac71dba202bfc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9796097006c14355911d008e55a34e02": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "88578f3324284300a47e8cf1f6cfc6a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1918ddd89dbf436382ca55d8cc1a6ee8",
+ "IPY_MODEL_31de8788458d4fe58b08e97e5d640678",
+ "IPY_MODEL_0d087dce6879419f8c7c9f9cc073e5bf"
+ ],
+ "layout": "IPY_MODEL_ccbf0e95d21b430d9b5163184629842b"
+ }
+ },
+ "1918ddd89dbf436382ca55d8cc1a6ee8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4f8a049a0539468fae2baaa701c291e7",
+ "placeholder": "",
+ "style": "IPY_MODEL_2c58003aaaf14d60a4c884c0d4243f8b",
+ "value": "Downloading data: 100%"
+ }
+ },
+ "31de8788458d4fe58b08e97e5d640678": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_89af535aa87343e6b83887b60e4ef715",
+ "max": 229603,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d442b2a07ba44a1b8b8fb3893b898d63",
+ "value": 229603
+ }
+ },
+ "0d087dce6879419f8c7c9f9cc073e5bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1dc16269f00e41fab7066ec1bd348e7b",
+ "placeholder": "",
+ "style": "IPY_MODEL_fca69ca540bd4afb99c4132dc0cfa4df",
+ "value": " 230k/230k [00:00<00:00, 848kB/s]"
+ }
+ },
+ "ccbf0e95d21b430d9b5163184629842b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4f8a049a0539468fae2baaa701c291e7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2c58003aaaf14d60a4c884c0d4243f8b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "89af535aa87343e6b83887b60e4ef715": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d442b2a07ba44a1b8b8fb3893b898d63": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1dc16269f00e41fab7066ec1bd348e7b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fca69ca540bd4afb99c4132dc0cfa4df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ca4a7da11da24e2ca093b0599da2d766": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0aae0a6bf3c3420896cba80fba76e8be",
+ "IPY_MODEL_9adf99ac52d843399091a4d96887e327",
+ "IPY_MODEL_b7e6901066954bd89e68c8c7d9048a8c"
+ ],
+ "layout": "IPY_MODEL_aa19597a01c74dc09e00d9673ea2cc85"
+ }
+ },
+ "0aae0a6bf3c3420896cba80fba76e8be": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9a656a5e507a4cec83067f843774677e",
+ "placeholder": "",
+ "style": "IPY_MODEL_1504a2371ce6427183cf494e95edd269",
+ "value": "Generating train split: 100%"
+ }
+ },
+ "9adf99ac52d843399091a4d96887e327": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_761e853fdba244c5b264a2cd949be866",
+ "max": 978,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5f6f8efa5e7e4bbba72388b0277852c7",
+ "value": 978
+ }
+ },
+ "b7e6901066954bd89e68c8c7d9048a8c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52b847569a1542c69cf2ed7ba912412e",
+ "placeholder": "",
+ "style": "IPY_MODEL_d5e7fce36f054e2786f4661b1d41d834",
+ "value": " 978/978 [00:00<00:00, 7412.43 examples/s]"
+ }
+ },
+ "aa19597a01c74dc09e00d9673ea2cc85": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9a656a5e507a4cec83067f843774677e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1504a2371ce6427183cf494e95edd269": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "761e853fdba244c5b264a2cd949be866": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5f6f8efa5e7e4bbba72388b0277852c7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "52b847569a1542c69cf2ed7ba912412e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d5e7fce36f054e2786f4661b1d41d834": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c2f9f28cf2914570ac8446a48026a3bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4dcde00cfe604b9e9109907b046bb18a",
+ "IPY_MODEL_055478fbd9d442b28d984b153ad0e5ef",
+ "IPY_MODEL_0f472edf561d478ba552a70669c9f3ea"
+ ],
+ "layout": "IPY_MODEL_f147916fb3f7465ebf856a198e0c9fab"
+ }
+ },
+ "4dcde00cfe604b9e9109907b046bb18a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a4666699cf28473fb4bae8ecb67cbf24",
+ "placeholder": "",
+ "style": "IPY_MODEL_660e7e7d609a4a4b9004a689cbda87dc",
+ "value": "Map: 100%"
+ }
+ },
+ "055478fbd9d442b28d984b153ad0e5ef": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_daee76f875bf462990cd14c5cba818f9",
+ "max": 684,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ab5269cbbae6443dbd2cbb1444a7b56c",
+ "value": 684
+ }
+ },
+ "0f472edf561d478ba552a70669c9f3ea": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ad134097c8c34244bc155d94592e7fab",
+ "placeholder": "",
+ "style": "IPY_MODEL_9762c56a82504232a4e2fb95f16e3f2a",
+ "value": " 684/684 [00:00<00:00, 6220.44 examples/s]"
+ }
+ },
+ "f147916fb3f7465ebf856a198e0c9fab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a4666699cf28473fb4bae8ecb67cbf24": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "660e7e7d609a4a4b9004a689cbda87dc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "daee76f875bf462990cd14c5cba818f9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ab5269cbbae6443dbd2cbb1444a7b56c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "ad134097c8c34244bc155d94592e7fab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9762c56a82504232a4e2fb95f16e3f2a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6eb64758cd9f4921b69655868c428a0c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b1129d71adf643e8b75089e43a29230e",
+ "IPY_MODEL_7eecd26c38204a6ab360c456a860f69c",
+ "IPY_MODEL_ceb3aeafa97f478ca7ba56cc5b90990b"
+ ],
+ "layout": "IPY_MODEL_7abdc553306c4ce59a9d9642d307d7c1"
+ }
+ },
+ "b1129d71adf643e8b75089e43a29230e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7d9335a47bfb43a99bb13311d4e6088d",
+ "placeholder": "",
+ "style": "IPY_MODEL_c4ba4d02009249b382ba2aa528122ab6",
+ "value": "Map: 100%"
+ }
+ },
+ "7eecd26c38204a6ab360c456a860f69c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_1dd54e75068b4038af0d9fe75ceb2c68",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f7524f28fdaf4bc993dad499312165e4",
+ "value": 147
+ }
+ },
+ "ceb3aeafa97f478ca7ba56cc5b90990b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6e3df06c2b3649e69933b740c8edf7e9",
+ "placeholder": "",
+ "style": "IPY_MODEL_820dd3f57b4e457b95da525e00400d22",
+ "value": " 147/147 [00:00<00:00, 2605.00 examples/s]"
+ }
+ },
+ "7abdc553306c4ce59a9d9642d307d7c1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7d9335a47bfb43a99bb13311d4e6088d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c4ba4d02009249b382ba2aa528122ab6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1dd54e75068b4038af0d9fe75ceb2c68": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f7524f28fdaf4bc993dad499312165e4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6e3df06c2b3649e69933b740c8edf7e9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "820dd3f57b4e457b95da525e00400d22": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "53f5043b8e0b4842bba04f9d0d2f34b9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_38d06ba36cc649d093117b9863178f2d",
+ "IPY_MODEL_aeb29a2b58c04632a4b016e470aed464",
+ "IPY_MODEL_0245b6685d7645b29bad2288899dab52"
+ ],
+ "layout": "IPY_MODEL_bfb2b962a6404adb985f033576334d89"
+ }
+ },
+ "38d06ba36cc649d093117b9863178f2d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_832335249b154b939082e8fe78417dc1",
+ "placeholder": "",
+ "style": "IPY_MODEL_64a44b5e587a4784a87f824858a775df",
+ "value": "Map: 100%"
+ }
+ },
+ "aeb29a2b58c04632a4b016e470aed464": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fac8cab862614352a01cae3b25295fb3",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_12d2107b4c5a40b591bd8dbb2912ab30",
+ "value": 147
+ }
+ },
+ "0245b6685d7645b29bad2288899dab52": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2f4e81a69d344f3691045128fbe03fea",
+ "placeholder": "",
+ "style": "IPY_MODEL_ff8d6446790f406995c73120cd6c5b85",
+ "value": " 147/147 [00:00<00:00, 2553.01 examples/s]"
+ }
+ },
+ "bfb2b962a6404adb985f033576334d89": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "832335249b154b939082e8fe78417dc1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "64a44b5e587a4784a87f824858a775df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fac8cab862614352a01cae3b25295fb3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "12d2107b4c5a40b591bd8dbb2912ab30": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2f4e81a69d344f3691045128fbe03fea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ff8d6446790f406995c73120cd6c5b85": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2a5bdc5b69b84c7a908b3af9716ce886": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c30ae73718d64bbea44cdac8134bfb17",
+ "IPY_MODEL_ee1e94300fdb4d0db6258689e1e2fde0",
+ "IPY_MODEL_5dd6a06280194b65bf7814ec50f90814"
+ ],
+ "layout": "IPY_MODEL_465d9580db1a4d4495293a53ac2bfe0a"
+ }
+ },
+ "c30ae73718d64bbea44cdac8134bfb17": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_38309776c56542fd9f98267456213aa8",
+ "placeholder": "",
+ "style": "IPY_MODEL_c81658d8deb34a05a0ac14bc8d30e867",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "ee1e94300fdb4d0db6258689e1e2fde0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_00ac5f944134458aa95ef4ee8eb1da74",
+ "max": 684,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c9a6b2cafed345a6845f57bfc2b3b360",
+ "value": 684
+ }
+ },
+ "5dd6a06280194b65bf7814ec50f90814": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f84a56a4283f416daa9557896798561f",
+ "placeholder": "",
+ "style": "IPY_MODEL_4c2db47594fc4e11ae97e33fb404529d",
+ "value": " 684/684 [00:01<00:00, 401.64 examples/s]"
+ }
+ },
+ "465d9580db1a4d4495293a53ac2bfe0a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "38309776c56542fd9f98267456213aa8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c81658d8deb34a05a0ac14bc8d30e867": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "00ac5f944134458aa95ef4ee8eb1da74": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c9a6b2cafed345a6845f57bfc2b3b360": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f84a56a4283f416daa9557896798561f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4c2db47594fc4e11ae97e33fb404529d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "821eb82c1d2845528f57067e4348e6df": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f446ada26bf147f6b7315a999210c57c",
+ "IPY_MODEL_27e58dc4b5454c57b9ba1c736e60aad5",
+ "IPY_MODEL_d262b5f3fa8944ed9cdefc30b5568fa6"
+ ],
+ "layout": "IPY_MODEL_537c7999244b4bebbadd16775f003df0"
+ }
+ },
+ "f446ada26bf147f6b7315a999210c57c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3196e93b2f894a23a99c5c06f33d3933",
+ "placeholder": "",
+ "style": "IPY_MODEL_786333721f9c4781b043d4b607d6cf70",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "27e58dc4b5454c57b9ba1c736e60aad5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_003e583e436f410695ffb47a08efef7f",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3cd402cc8b384a1dbbb6e8d5294c8d02",
+ "value": 147
+ }
+ },
+ "d262b5f3fa8944ed9cdefc30b5568fa6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2f234414fcd1469cbd83b84fa715a05e",
+ "placeholder": "",
+ "style": "IPY_MODEL_8bfd38742aee4890ba94850b1cc80a4f",
+ "value": " 147/147 [00:00<00:00, 403.77 examples/s]"
+ }
+ },
+ "537c7999244b4bebbadd16775f003df0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3196e93b2f894a23a99c5c06f33d3933": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "786333721f9c4781b043d4b607d6cf70": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "003e583e436f410695ffb47a08efef7f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3cd402cc8b384a1dbbb6e8d5294c8d02": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2f234414fcd1469cbd83b84fa715a05e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "8bfd38742aee4890ba94850b1cc80a4f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2a4405849f53493e91c9e398e1b2e236": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9b8e12f3cde04c0e8c78f97c6ade4c05",
+ "IPY_MODEL_2ce80b73a684484587802a9c31a564f1",
+ "IPY_MODEL_ca663a9448474b0bb4e6a7d537a1d609"
+ ],
+ "layout": "IPY_MODEL_af4dd475d48e450f910f503bfd188860"
+ }
+ },
+ "9b8e12f3cde04c0e8c78f97c6ade4c05": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0c15c1724b3d4eff9b042c51b681b8a2",
+ "placeholder": "",
+ "style": "IPY_MODEL_ce09abf0f62b41cea3243cc7f9fd9a5f",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "2ce80b73a684484587802a9c31a564f1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2833f29f39394e658924008787a46d4b",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a060819c5b1e4f0193d7a0211090d911",
+ "value": 147
+ }
+ },
+ "ca663a9448474b0bb4e6a7d537a1d609": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a527c7646f224dd287ae29221a86bfd5",
+ "placeholder": "",
+ "style": "IPY_MODEL_fa2a2add1e8145f0b309c6f4f8346df7",
+ "value": " 147/147 [00:00<00:00, 138.26 examples/s]"
+ }
+ },
+ "af4dd475d48e450f910f503bfd188860": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0c15c1724b3d4eff9b042c51b681b8a2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ce09abf0f62b41cea3243cc7f9fd9a5f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2833f29f39394e658924008787a46d4b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a060819c5b1e4f0193d7a0211090d911": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a527c7646f224dd287ae29221a86bfd5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fa2a2add1e8145f0b309c6f4f8346df7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c10a1824b4964aadb2cba95d85c64cde": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_3acd9492f1ab4b0a89bbcc587ff6ebfa",
+ "IPY_MODEL_1422dd0d7da342a19786a8e60f00a463",
+ "IPY_MODEL_90d29862ac6a4686bb252daded081bde"
+ ],
+ "layout": "IPY_MODEL_3be5f0ddab7c475c979e7826b82e3c9a"
+ }
+ },
+ "3acd9492f1ab4b0a89bbcc587ff6ebfa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_41d493b1a90c421fa4db6e1585067bbd",
+ "placeholder": "",
+ "style": "IPY_MODEL_3b4a622702b748e293cd6db9381acad6",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "1422dd0d7da342a19786a8e60f00a463": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_627cb0ab7acc4278988e4b8a6509d1a2",
+ "max": 684,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9c354a9dc9b742be90a1deb9579f1be2",
+ "value": 684
+ }
+ },
+ "90d29862ac6a4686bb252daded081bde": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_15a848cb1a2c48b5ac3b8f1376d15ed7",
+ "placeholder": "",
+ "style": "IPY_MODEL_7ddf72e5b1154db5b4555191c5346bbb",
+ "value": " 684/684��[00:00<00:00, 586.03 examples/s]"
+ }
+ },
+ "3be5f0ddab7c475c979e7826b82e3c9a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "41d493b1a90c421fa4db6e1585067bbd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3b4a622702b748e293cd6db9381acad6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "627cb0ab7acc4278988e4b8a6509d1a2": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9c354a9dc9b742be90a1deb9579f1be2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "15a848cb1a2c48b5ac3b8f1376d15ed7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7ddf72e5b1154db5b4555191c5346bbb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "71ed459b656f4dc3a5749213894e306c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c405d7e18f374a3b94e9dbbd650c311f",
+ "IPY_MODEL_8d1818d9f1b94d1abc8a7b699beac5c4",
+ "IPY_MODEL_4d15938847a74482ae2c6fa1fc38822f"
+ ],
+ "layout": "IPY_MODEL_9852573b36bd41f789cecb5906889131"
+ }
+ },
+ "c405d7e18f374a3b94e9dbbd650c311f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f599fc9873c848cd892878bed113fe4b",
+ "placeholder": "",
+ "style": "IPY_MODEL_d67f8a418fdb40c4ac6fc78e3f24f408",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "8d1818d9f1b94d1abc8a7b699beac5c4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ec25383094b4470f812d1f2feaa0430a",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_53266e2619f34c439972f702f40a14fe",
+ "value": 147
+ }
+ },
+ "4d15938847a74482ae2c6fa1fc38822f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_95d5043ad4bf40f68ad3583715213c8a",
+ "placeholder": "",
+ "style": "IPY_MODEL_3023427cf5ff412ba27dacb274f2f3a8",
+ "value": " 147/147 [00:00<00:00, 254.86 examples/s]"
+ }
+ },
+ "9852573b36bd41f789cecb5906889131": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f599fc9873c848cd892878bed113fe4b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d67f8a418fdb40c4ac6fc78e3f24f408": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ec25383094b4470f812d1f2feaa0430a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "53266e2619f34c439972f702f40a14fe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "95d5043ad4bf40f68ad3583715213c8a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3023427cf5ff412ba27dacb274f2f3a8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7d6f59c3384248ba8bcd17bd507813dd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0defae97c2784f67865153860c57d2d0",
+ "IPY_MODEL_77a08c827ec547e1ab12571c38cb40a0",
+ "IPY_MODEL_7f812718c13f40f1ab59249eb5053655"
+ ],
+ "layout": "IPY_MODEL_398f4c2e4fe34a5cb06088dc03c72e0d"
+ }
+ },
+ "0defae97c2784f67865153860c57d2d0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_401f4e5fa90e4f128b8bc7afec034200",
+ "placeholder": "",
+ "style": "IPY_MODEL_ef7b2b94875b42819079c32f57e0f04b",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "77a08c827ec547e1ab12571c38cb40a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "FloatProgressModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_716f95a5bd4c46ff8e8ab0d2f343651c",
+ "max": 147,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aca2b090d0cf42b49a1e52cc5e52ee94",
+ "value": 147
+ }
+ },
+ "7f812718c13f40f1ab59249eb5053655": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6e92f1e49d574a668177a61bab778415",
+ "placeholder": "",
+ "style": "IPY_MODEL_f9f640dc53c54086ad9f2bb28a7170c0",
+ "value": " 147/147 [00:00<00:00, 215.26 examples/s]"
+ }
+ },
+ "398f4c2e4fe34a5cb06088dc03c72e0d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "401f4e5fa90e4f128b8bc7afec034200": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef7b2b94875b42819079c32f57e0f04b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "716f95a5bd4c46ff8e8ab0d2f343651c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "aca2b090d0cf42b49a1e52cc5e52ee94": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "ProgressStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6e92f1e49d574a668177a61bab778415": {
+ "model_module": "@jupyter-widgets/base",
+ "model_name": "LayoutModel",
+ "model_module_version": "1.2.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f9f640dc53c54086ad9f2bb28a7170c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "DescriptionStyleModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3d5ff5586a5b4d459d76b40f93ceb550": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "VBoxModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "VBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "VBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_537a1dafa2b7490f89901bd971da14c4",
+ "IPY_MODEL_236d51ef1c274cb09151cebbb60bd4ef",
+ "IPY_MODEL_e3a4f2db92c34e19a94815372f561e34",
+ "IPY_MODEL_12876c2faee448d19fce67ac75d036d8"
+ ],
+ "layout": "IPY_MODEL_1c4b6fdc10ad4938adfbdf54f612b0cd"
+ }
+ },
+ "b540e844c7bb4c9588fc28ca0e940db6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_name": "HTMLModel",
+ "model_module_version": "1.5.0",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7bb36017efcd43a38670ae1c2fdfe54c",
+ "placeholder": "",
+ "style": "IPY_MODEL_66f4437d89c34b39861fcd4bd6f04160",
+ "value": "