|
import math |
|
from os.path import basename, dirname, join, isfile |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as nnf |
|
from torch.nn.modules.activation import ReLU |
|
|
|
|
|
def get_prompt_list(prompt): |
|
if prompt == 'plain': |
|
return ['{}'] |
|
elif prompt == 'fixed': |
|
return ['a photo of a {}.'] |
|
elif prompt == 'shuffle': |
|
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] |
|
elif prompt == 'shuffle+': |
|
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', |
|
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', |
|
'a bad photo of a {}.', 'a photo of the {}.'] |
|
else: |
|
raise ValueError('Invalid value for prompt') |
|
|
|
|
|
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None): |
|
""" |
|
Simplified version of multihead attention (taken from torch source code but without tons of if clauses). |
|
The mlp and layer norm come from CLIP. |
|
x: input. |
|
b: multihead attention module. |
|
""" |
|
|
|
x_ = b.ln_1(x) |
|
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1) |
|
tgt_len, bsz, embed_dim = q.size() |
|
|
|
head_dim = embed_dim // b.attn.num_heads |
|
scaling = float(head_dim) ** -0.5 |
|
|
|
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) |
|
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) |
|
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) |
|
|
|
q = q * scaling |
|
|
|
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) |
|
if attn_mask is not None: |
|
|
|
|
|
attn_mask_type, attn_mask = attn_mask |
|
n_heads = attn_output_weights.size(0) // attn_mask.size(0) |
|
attn_mask = attn_mask.repeat(n_heads, 1) |
|
|
|
if attn_mask_type == 'cls_token': |
|
|
|
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...] |
|
|
|
|
|
if attn_mask_type == 'all': |
|
|
|
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None] |
|
|
|
|
|
attn_output_weights = torch.softmax(attn_output_weights, dim=-1) |
|
|
|
attn_output = torch.bmm(attn_output_weights, v) |
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn_output = b.attn.out_proj(attn_output) |
|
|
|
x = x + attn_output |
|
x = x + b.mlp(b.ln_2(x)) |
|
|
|
if with_aff: |
|
return x, attn_output_weights |
|
else: |
|
return x |
|
|
|
|
|
class CLIPDenseBase(nn.Module): |
|
|
|
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens): |
|
super().__init__() |
|
|
|
import clip |
|
|
|
|
|
self.clip_model, _ = clip.load(version, device='cpu', jit=False) |
|
self.model = self.clip_model.visual |
|
|
|
|
|
self.n_tokens = n_tokens |
|
|
|
for p in self.clip_model.parameters(): |
|
p.requires_grad_(False) |
|
|
|
|
|
if reduce_cond is not None: |
|
self.reduce_cond = nn.Linear(512, reduce_cond) |
|
for p in self.reduce_cond.parameters(): |
|
p.requires_grad_(False) |
|
else: |
|
self.reduce_cond = None |
|
|
|
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) |
|
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) |
|
|
|
self.reduce = nn.Linear(768, reduce_dim) |
|
|
|
self.prompt_list = get_prompt_list(prompt) |
|
|
|
|
|
import pickle |
|
if isfile('precomputed_prompt_vectors.pickle'): |
|
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) |
|
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} |
|
else: |
|
self.precomputed_prompts = dict() |
|
|
|
def rescaled_pos_emb(self, new_size): |
|
assert len(new_size) == 2 |
|
|
|
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) |
|
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T |
|
return torch.cat([self.model.positional_embedding[:1], b]) |
|
|
|
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
inp_size = x_inp.shape[2:] |
|
|
|
if self.n_tokens is not None: |
|
stride2 = x_inp.shape[2] // self.n_tokens |
|
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True) |
|
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation) |
|
else: |
|
x = self.model.conv1(x_inp) |
|
|
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
|
|
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) |
|
|
|
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197 |
|
|
|
if x.shape[1] != standard_n_tokens: |
|
new_shape = int(math.sqrt(x.shape[1]-1)) |
|
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:] |
|
else: |
|
x = x + self.model.positional_embedding.to(x.dtype) |
|
|
|
x = self.model.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
|
|
activations, affinities = [], [] |
|
for i, res_block in enumerate(self.model.transformer.resblocks): |
|
|
|
if mask is not None: |
|
mask_layer, mask_type, mask_tensor = mask |
|
if mask_layer == i or mask_layer == 'all': |
|
|
|
size = int(math.sqrt(x.shape[0] - 1)) |
|
|
|
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size)) |
|
|
|
else: |
|
attn_mask = None |
|
else: |
|
attn_mask = None |
|
|
|
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask) |
|
|
|
if i in extract_layers: |
|
affinities += [aff_per_head] |
|
|
|
|
|
|
|
|
|
activations += [x] |
|
|
|
if len(extract_layers) > 0 and i == max(extract_layers) and skip: |
|
print('early skip') |
|
break |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.model.ln_post(x[:, 0, :]) |
|
|
|
if self.model.proj is not None: |
|
x = x @ self.model.proj |
|
|
|
return x, activations, affinities |
|
|
|
def sample_prompts(self, words, prompt_list=None): |
|
|
|
prompt_list = prompt_list if prompt_list is not None else self.prompt_list |
|
|
|
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) |
|
prompts = [prompt_list[i] for i in prompt_indices] |
|
return [promt.format(w) for promt, w in zip(prompts, words)] |
|
|
|
def get_cond_vec(self, conditional, batch_size): |
|
|
|
if conditional is not None and type(conditional) == str: |
|
cond = self.compute_conditional(conditional) |
|
cond = cond.repeat(batch_size, 1) |
|
|
|
|
|
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: |
|
assert len(conditional) == batch_size |
|
cond = self.compute_conditional(conditional) |
|
|
|
|
|
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: |
|
cond = conditional |
|
|
|
|
|
elif conditional is not None and type(conditional) == torch.Tensor: |
|
with torch.no_grad(): |
|
cond, _, _ = self.visual_forward(conditional) |
|
else: |
|
raise ValueError('invalid conditional') |
|
return cond |
|
|
|
def compute_conditional(self, conditional): |
|
import clip |
|
|
|
dev = next(self.parameters()).device |
|
|
|
if type(conditional) in {list, tuple}: |
|
text_tokens = clip.tokenize(conditional).to(dev) |
|
cond = self.clip_model.encode_text(text_tokens) |
|
else: |
|
if conditional in self.precomputed_prompts: |
|
cond = self.precomputed_prompts[conditional].float().to(dev) |
|
else: |
|
text_tokens = clip.tokenize([conditional]).to(dev) |
|
cond = self.clip_model.encode_text(text_tokens)[0] |
|
|
|
if self.shift_vector is not None: |
|
return cond + self.shift_vector |
|
else: |
|
return cond |
|
|
|
|
|
def clip_load_untrained(version): |
|
assert version == 'ViT-B/16' |
|
from clip.model import CLIP |
|
from clip.clip import _MODELS, _download |
|
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval() |
|
state_dict = model.state_dict() |
|
|
|
vision_width = state_dict["visual.conv1.weight"].shape[0] |
|
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) |
|
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] |
|
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) |
|
image_resolution = vision_patch_size * grid_size |
|
embed_dim = state_dict["text_projection"].shape[1] |
|
context_length = state_dict["positional_embedding"].shape[0] |
|
vocab_size = state_dict["token_embedding.weight"].shape[0] |
|
transformer_width = state_dict["ln_final.weight"].shape[0] |
|
transformer_heads = transformer_width // 64 |
|
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) |
|
|
|
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, |
|
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers) |
|
|
|
|
|
class CLIPDensePredT(CLIPDenseBase): |
|
|
|
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', |
|
extra_blocks=0, reduce_cond=None, fix_shift=False, |
|
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False, |
|
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False): |
|
|
|
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) |
|
|
|
|
|
self.extract_layers = extract_layers |
|
self.cond_layer = cond_layer |
|
self.limit_to_clip_only = limit_to_clip_only |
|
self.process_cond = None |
|
self.rev_activations = rev_activations |
|
|
|
depth = len(extract_layers) |
|
|
|
if add_calibration: |
|
self.calibration_conds = 1 |
|
|
|
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None |
|
|
|
self.add_activation1 = True |
|
|
|
self.version = version |
|
|
|
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] |
|
|
|
if fix_shift: |
|
|
|
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False) |
|
|
|
else: |
|
self.shift_vector = None |
|
|
|
if trans_conv is None: |
|
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] |
|
else: |
|
|
|
trans_conv_ks = (trans_conv, trans_conv) |
|
|
|
if not complex_trans_conv: |
|
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) |
|
else: |
|
assert trans_conv_ks[0] == trans_conv_ks[1] |
|
|
|
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4) |
|
|
|
self.trans_conv = nn.Sequential( |
|
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]), |
|
nn.ReLU(), |
|
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]), |
|
) |
|
|
|
|
|
|
|
assert len(self.extract_layers) == depth |
|
|
|
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) |
|
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) |
|
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) |
|
|
|
|
|
|
|
if learn_trans_conv_only: |
|
for p in self.parameters(): |
|
p.requires_grad_(False) |
|
|
|
for p in self.trans_conv.parameters(): |
|
p.requires_grad_(True) |
|
|
|
self.prompt_list = get_prompt_list(prompt) |
|
|
|
|
|
def forward(self, inp_image, conditional=None, return_features=False, mask=None): |
|
|
|
assert type(return_features) == bool |
|
|
|
inp_image = inp_image.to(self.model.positional_embedding.device) |
|
|
|
if mask is not None: |
|
raise ValueError('mask not supported') |
|
|
|
|
|
x_inp = inp_image |
|
|
|
bs, dev = inp_image.shape[0], x_inp.device |
|
|
|
cond = self.get_cond_vec(conditional, bs) |
|
|
|
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) |
|
|
|
activation1 = activations[0] |
|
activations = activations[1:] |
|
|
|
_activations = activations[::-1] if not self.rev_activations else activations |
|
|
|
a = None |
|
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)): |
|
|
|
if a is not None: |
|
a = reduce(activation) + a |
|
else: |
|
a = reduce(activation) |
|
|
|
if i == self.cond_layer: |
|
if self.reduce_cond is not None: |
|
cond = self.reduce_cond(cond) |
|
|
|
a = self.film_mul(cond) * a + self.film_add(cond) |
|
|
|
a = block(a) |
|
|
|
for block in self.extra_blocks: |
|
a = a + block(a) |
|
|
|
a = a[1:].permute(1, 2, 0) |
|
|
|
size = int(math.sqrt(a.shape[2])) |
|
|
|
a = a.view(bs, a.shape[1], size, size) |
|
|
|
a = self.trans_conv(a) |
|
|
|
if self.n_tokens is not None: |
|
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True) |
|
|
|
if self.upsample_proj is not None: |
|
a = self.upsample_proj(a) |
|
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') |
|
|
|
if return_features: |
|
return a, visual_q, cond, [activation1] + activations |
|
else: |
|
return a, |
|
|
|
|
|
|
|
class CLIPDensePredTMasked(CLIPDensePredT): |
|
|
|
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, |
|
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False, |
|
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None): |
|
|
|
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim, |
|
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond, |
|
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only, |
|
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration, |
|
n_tokens=n_tokens) |
|
|
|
def visual_forward_masked(self, img_s, seg_s): |
|
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s)) |
|
|
|
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False): |
|
|
|
if seg_s is None: |
|
cond = cond_or_img_s |
|
else: |
|
img_s = cond_or_img_s |
|
|
|
with torch.no_grad(): |
|
cond, _, _ = self.visual_forward_masked(img_s, seg_s) |
|
|
|
return super().forward(img_q, cond, return_features=return_features) |
|
|
|
|
|
|
|
class CLIPDenseBaseline(CLIPDenseBase): |
|
|
|
def __init__(self, version='ViT-B/32', cond_layer=0, |
|
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed', |
|
reduce_cond=None, limit_to_clip_only=False, n_tokens=None): |
|
|
|
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) |
|
device = 'cpu' |
|
|
|
|
|
self.extract_layer = extract_layer |
|
self.limit_to_clip_only = limit_to_clip_only |
|
self.shift_vector = None |
|
|
|
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] |
|
|
|
assert reduce2_dim is not None |
|
|
|
self.reduce2 = nn.Sequential( |
|
nn.Linear(reduce_dim, reduce2_dim), |
|
nn.ReLU(), |
|
nn.Linear(reduce2_dim, reduce_dim) |
|
) |
|
|
|
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] |
|
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) |
|
|
|
|
|
def forward(self, inp_image, conditional=None, return_features=False): |
|
|
|
inp_image = inp_image.to(self.model.positional_embedding.device) |
|
|
|
|
|
x_inp = inp_image |
|
|
|
bs, dev = inp_image.shape[0], x_inp.device |
|
|
|
cond = self.get_cond_vec(conditional, bs) |
|
|
|
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer]) |
|
|
|
a = activations[0] |
|
a = self.reduce(a) |
|
a = self.film_mul(cond) * a + self.film_add(cond) |
|
|
|
if self.reduce2 is not None: |
|
a = self.reduce2(a) |
|
|
|
|
|
|
|
a = a[1:].permute(1, 2, 0) |
|
|
|
size = int(math.sqrt(a.shape[2])) |
|
|
|
a = a.view(bs, a.shape[1], size, size) |
|
a = self.trans_conv(a) |
|
|
|
if return_features: |
|
return a, visual_q, cond, activations |
|
else: |
|
return a, |
|
|
|
|
|
class CLIPSegMultiLabel(nn.Module): |
|
|
|
def __init__(self, model) -> None: |
|
super().__init__() |
|
|
|
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC |
|
|
|
self.pascal_classes = VOC |
|
|
|
from clip.clipseg import CLIPDensePredT |
|
from general_utils import load_model |
|
|
|
self.clipseg = load_model(model, strict=False) |
|
|
|
self.clipseg.eval() |
|
|
|
def forward(self, x): |
|
|
|
bs = x.shape[0] |
|
out = torch.ones(21, bs, 352, 352).to(x.device) * -10 |
|
|
|
for class_id, class_name in enumerate(self.pascal_classes): |
|
|
|
fac = 3 if class_name == 'background' else 1 |
|
|
|
with torch.no_grad(): |
|
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac |
|
|
|
out[class_id] += pred |
|
|
|
|
|
out = out.permute(1, 0, 2, 3) |
|
|
|
return out |
|
|
|
|
|
|
|
|