|
import math |
|
from posixpath import basename, dirname, join |
|
|
|
from clip.model import convert_weights |
|
import torch |
|
import json |
|
from torch import nn |
|
from torch.nn import functional as nnf |
|
from torch.nn.modules import activation |
|
from torch.nn.modules.activation import ReLU |
|
from torchvision import transforms |
|
|
|
normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) |
|
|
|
from torchvision.models import ResNet |
|
|
|
|
|
def process_prompts(conditional, prompt_list, conditional_map): |
|
|
|
|
|
|
|
words = [conditional_map[int(i)] for i in conditional] |
|
words = [syns[torch.multinomial(torch.ones(len(syns)), 1, replacement=True).item()] for syns in words] |
|
words = [w.replace('_', ' ') for w in words] |
|
|
|
if prompt_list is not None: |
|
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) |
|
prompts = [prompt_list[i] for i in prompt_indices] |
|
else: |
|
prompts = ['a photo of {}'] * (len(words)) |
|
|
|
return [promt.format(w) for promt, w in zip(prompts, words)] |
|
|
|
|
|
class VITDenseBase(nn.Module): |
|
|
|
def rescaled_pos_emb(self, new_size): |
|
assert len(new_size) == 2 |
|
|
|
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) |
|
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T |
|
return torch.cat([self.model.positional_embedding[:1], b]) |
|
|
|
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): |
|
|
|
with torch.no_grad(): |
|
|
|
x_inp = nnf.interpolate(x_inp, (384, 384)) |
|
|
|
x = self.model.patch_embed(x_inp) |
|
cls_token = self.model.cls_token.expand(x.shape[0], -1, -1) |
|
if self.model.dist_token is None: |
|
x = torch.cat((cls_token, x), dim=1) |
|
else: |
|
x = torch.cat((cls_token, self.model.dist_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
x = self.model.pos_drop(x + self.model.pos_embed) |
|
|
|
activations = [] |
|
for i, block in enumerate(self.model.blocks): |
|
x = block(x) |
|
|
|
if i in extract_layers: |
|
|
|
activations += [x.permute(1,0,2)] |
|
|
|
x = self.model.norm(x) |
|
x = self.model.head(self.model.pre_logits(x[:, 0])) |
|
|
|
|
|
|
|
|
|
return x, activations, None |
|
|
|
def sample_prompts(self, words, prompt_list=None): |
|
|
|
prompt_list = prompt_list if prompt_list is not None else self.prompt_list |
|
|
|
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) |
|
prompts = [prompt_list[i] for i in prompt_indices] |
|
return [promt.format(w) for promt, w in zip(prompts, words)] |
|
|
|
def get_cond_vec(self, conditional, batch_size): |
|
|
|
if conditional is not None and type(conditional) == str: |
|
cond = self.compute_conditional(conditional) |
|
cond = cond.repeat(batch_size, 1) |
|
|
|
|
|
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: |
|
assert len(conditional) == batch_size |
|
cond = self.compute_conditional(conditional) |
|
|
|
|
|
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: |
|
cond = conditional |
|
|
|
|
|
elif conditional is not None and type(conditional) == torch.Tensor: |
|
with torch.no_grad(): |
|
cond, _, _ = self.visual_forward(conditional) |
|
else: |
|
raise ValueError('invalid conditional') |
|
return cond |
|
|
|
def compute_conditional(self, conditional): |
|
import clip |
|
|
|
dev = next(self.parameters()).device |
|
|
|
if type(conditional) in {list, tuple}: |
|
text_tokens = clip.tokenize(conditional).to(dev) |
|
cond = self.clip_model.encode_text(text_tokens) |
|
else: |
|
if conditional in self.precomputed_prompts: |
|
cond = self.precomputed_prompts[conditional].float().to(dev) |
|
else: |
|
text_tokens = clip.tokenize([conditional]).to(dev) |
|
cond = self.clip_model.encode_text(text_tokens)[0] |
|
|
|
return cond |
|
|
|
|
|
class VITDensePredT(VITDenseBase): |
|
|
|
def __init__(self, extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', |
|
depth=3, extra_blocks=0, reduce_cond=None, fix_shift=False, |
|
learn_trans_conv_only=False, refine=None, limit_to_clip_only=False, upsample=False, |
|
add_calibration=False, process_cond=None, not_pretrained=False): |
|
super().__init__() |
|
|
|
|
|
self.extract_layers = extract_layers |
|
self.cond_layer = cond_layer |
|
self.limit_to_clip_only = limit_to_clip_only |
|
self.process_cond = None |
|
|
|
if add_calibration: |
|
self.calibration_conds = 1 |
|
|
|
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None |
|
|
|
self.add_activation1 = True |
|
|
|
import timm |
|
self.model = timm.create_model('vit_base_patch16_384', pretrained=True) |
|
self.model.head = nn.Linear(768, 512 if reduce_cond is None else reduce_cond) |
|
|
|
for p in self.model.parameters(): |
|
p.requires_grad_(False) |
|
|
|
import clip |
|
self.clip_model, _ = clip.load('ViT-B/16', device='cpu', jit=False) |
|
|
|
|
|
|
|
self.token_shape = (14, 14) |
|
|
|
|
|
if reduce_cond is not None: |
|
self.reduce_cond = nn.Linear(512, reduce_cond) |
|
for p in self.reduce_cond.parameters(): |
|
p.requires_grad_(False) |
|
else: |
|
self.reduce_cond = None |
|
|
|
|
|
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) |
|
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) |
|
|
|
|
|
|
|
|
|
assert len(self.extract_layers) == depth |
|
|
|
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) |
|
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) |
|
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) |
|
|
|
trans_conv_ks = (16, 16) |
|
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) |
|
|
|
|
|
|
|
if learn_trans_conv_only: |
|
for p in self.parameters(): |
|
p.requires_grad_(False) |
|
|
|
for p in self.trans_conv.parameters(): |
|
p.requires_grad_(True) |
|
|
|
if prompt == 'fixed': |
|
self.prompt_list = ['a photo of a {}.'] |
|
elif prompt == 'shuffle': |
|
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] |
|
elif prompt == 'shuffle+': |
|
self.prompt_list = ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', |
|
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', |
|
'a bad photo of a {}.', 'a photo of the {}.'] |
|
elif prompt == 'shuffle_clip': |
|
from models.clip_prompts import imagenet_templates |
|
self.prompt_list = imagenet_templates |
|
|
|
if process_cond is not None: |
|
if process_cond == 'clamp' or process_cond[0] == 'clamp': |
|
|
|
val = process_cond[1] if type(process_cond) in {list, tuple} else 0.2 |
|
|
|
def clamp_vec(x): |
|
return torch.clamp(x, -val, val) |
|
|
|
self.process_cond = clamp_vec |
|
|
|
elif process_cond.endswith('.pth'): |
|
|
|
shift = torch.load(process_cond) |
|
def add_shift(x): |
|
return x + shift.to(x.device) |
|
|
|
self.process_cond = add_shift |
|
|
|
import pickle |
|
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) |
|
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} |
|
|
|
|
|
def forward(self, inp_image, conditional=None, return_features=False, mask=None): |
|
|
|
assert type(return_features) == bool |
|
|
|
|
|
|
|
if mask is not None: |
|
raise ValueError('mask not supported') |
|
|
|
|
|
x_inp = inp_image |
|
|
|
bs, dev = inp_image.shape[0], x_inp.device |
|
|
|
inp_image_size = inp_image.shape[2:] |
|
|
|
cond = self.get_cond_vec(conditional, bs) |
|
|
|
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) |
|
|
|
activation1 = activations[0] |
|
activations = activations[1:] |
|
|
|
a = None |
|
for i, (activation, block, reduce) in enumerate(zip(activations[::-1], self.blocks, self.reduces)): |
|
|
|
if a is not None: |
|
a = reduce(activation) + a |
|
else: |
|
a = reduce(activation) |
|
|
|
if i == self.cond_layer: |
|
if self.reduce_cond is not None: |
|
cond = self.reduce_cond(cond) |
|
|
|
a = self.film_mul(cond) * a + self.film_add(cond) |
|
|
|
a = block(a) |
|
|
|
for block in self.extra_blocks: |
|
a = a + block(a) |
|
|
|
a = a[1:].permute(1, 2, 0) |
|
|
|
size = int(math.sqrt(a.shape[2])) |
|
|
|
a = a.view(bs, a.shape[1], size, size) |
|
|
|
if self.trans_conv is not None: |
|
a = self.trans_conv(a) |
|
|
|
if self.upsample_proj is not None: |
|
a = self.upsample_proj(a) |
|
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') |
|
|
|
a = nnf.interpolate(a, inp_image_size) |
|
|
|
if return_features: |
|
return a, visual_q, cond, [activation1] + activations |
|
else: |
|
return a, |
|
|