Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,8 +7,6 @@ import scipy.io.wavfile as wavfile
|
|
| 7 |
import torch
|
| 8 |
import torchaudio
|
| 9 |
import gradio as gr
|
| 10 |
-
import numpy as np
|
| 11 |
-
import parselmouth
|
| 12 |
from TTS.api import TTS
|
| 13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
| 14 |
from TTS.tts.models.xtts import Xtts
|
|
@@ -25,9 +23,6 @@ def check_and_install(package):
|
|
| 25 |
print(f"{package} no está instalado. Instalando...")
|
| 26 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 27 |
|
| 28 |
-
# Check and install parselmouth
|
| 29 |
-
check_and_install("parselmouth")
|
| 30 |
-
|
| 31 |
print("Descargando y configurando el modelo...")
|
| 32 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
| 33 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
|
@@ -52,22 +47,7 @@ model.cuda()
|
|
| 52 |
|
| 53 |
print("Modelo cargado en GPU")
|
| 54 |
|
| 55 |
-
def
|
| 56 |
-
sound = parselmouth.Sound(audio_path)
|
| 57 |
-
manipulation = parselmouth.praat.call(sound, "To Manipulation", 0.01, 75, 600)
|
| 58 |
-
|
| 59 |
-
pitch_tier = parselmouth.praat.call(manipulation, "Extract pitch tier")
|
| 60 |
-
|
| 61 |
-
parselmouth.praat.call(pitch_tier, "Multiply frequencies", sound.xmin, sound.xmax, pitch_factor)
|
| 62 |
-
|
| 63 |
-
parselmouth.praat.call([pitch_tier, manipulation], "Replace pitch tier")
|
| 64 |
-
new_sound = parselmouth.praat.call(manipulation, "Get resynthesis (overlap-add)")
|
| 65 |
-
|
| 66 |
-
output_path = "pitch_adjusted_output.wav"
|
| 67 |
-
new_sound.save(output_path, parselmouth.SoundFileFormat.WAV)
|
| 68 |
-
return output_path
|
| 69 |
-
|
| 70 |
-
def predict(prompt, language, reference_audio, speed, pitch_factor):
|
| 71 |
try:
|
| 72 |
if len(prompt) < 2 or len(prompt) > 600:
|
| 73 |
return None, "El texto debe tener entre 2 y 600 caracteres."
|
|
@@ -104,12 +84,9 @@ def predict(prompt, language, reference_audio, speed, pitch_factor):
|
|
| 104 |
|
| 105 |
output_path = "pedro_labattaglia_TTS.wav"
|
| 106 |
# Guardar el audio directamente desde el output del modelo
|
|
|
|
| 107 |
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
|
| 108 |
|
| 109 |
-
# Adjust pitch
|
| 110 |
-
if pitch_factor != 1.0:
|
| 111 |
-
output_path = adjust_pitch(output_path, pitch_factor)
|
| 112 |
-
|
| 113 |
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
|
| 114 |
real_time_factor = inference_time / audio_length
|
| 115 |
|
|
@@ -146,7 +123,6 @@ Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia.
|
|
| 146 |
- Elija el idioma (Español o Inglés)
|
| 147 |
- Elija un audio de referencia de la lista
|
| 148 |
- Ajuste la velocidad del habla si lo desea
|
| 149 |
-
- Ajuste el pitch de la voz si lo desea
|
| 150 |
- Escriba el texto que desea sintetizar
|
| 151 |
- Presione generar voz
|
| 152 |
"""
|
|
@@ -166,13 +142,12 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 166 |
elem_id="image-container"
|
| 167 |
)
|
| 168 |
|
| 169 |
-
# Fila para seleccionar idioma, referencia, velocidad
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column(scale=2):
|
| 172 |
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
|
| 173 |
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
|
| 174 |
speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
|
| 175 |
-
pitch_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Ajuste de pitch")
|
| 176 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
| 177 |
generate_button = gr.Button("Generar voz", variant="primary")
|
| 178 |
|
|
@@ -183,7 +158,7 @@ with gr.Blocks(theme=theme) as demo:
|
|
| 183 |
# Configuración del botón para generar voz
|
| 184 |
generate_button.click(
|
| 185 |
predict,
|
| 186 |
-
inputs=[input_text, language_selector, reference_audio, speed_slider
|
| 187 |
outputs=[generated_audio, metrics_output]
|
| 188 |
)
|
| 189 |
|
|
|
|
| 7 |
import torch
|
| 8 |
import torchaudio
|
| 9 |
import gradio as gr
|
|
|
|
|
|
|
| 10 |
from TTS.api import TTS
|
| 11 |
from TTS.tts.configs.xtts_config import XttsConfig
|
| 12 |
from TTS.tts.models.xtts import Xtts
|
|
|
|
| 23 |
print(f"{package} no está instalado. Instalando...")
|
| 24 |
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
print("Descargando y configurando el modelo...")
|
| 27 |
repo_id = "Blakus/Pedro_Lab_XTTS"
|
| 28 |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
|
|
|
|
| 47 |
|
| 48 |
print("Modelo cargado en GPU")
|
| 49 |
|
| 50 |
+
def predict(prompt, language, reference_audio, speed):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
try:
|
| 52 |
if len(prompt) < 2 or len(prompt) > 600:
|
| 53 |
return None, "El texto debe tener entre 2 y 600 caracteres."
|
|
|
|
| 84 |
|
| 85 |
output_path = "pedro_labattaglia_TTS.wav"
|
| 86 |
# Guardar el audio directamente desde el output del modelo
|
| 87 |
+
import scipy.io.wavfile as wavfile
|
| 88 |
wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
audio_length = len(out["wav"]) / config.audio["output_sample_rate"] # duración del audio en segundos
|
| 91 |
real_time_factor = inference_time / audio_length
|
| 92 |
|
|
|
|
| 123 |
- Elija el idioma (Español o Inglés)
|
| 124 |
- Elija un audio de referencia de la lista
|
| 125 |
- Ajuste la velocidad del habla si lo desea
|
|
|
|
| 126 |
- Escriba el texto que desea sintetizar
|
| 127 |
- Presione generar voz
|
| 128 |
"""
|
|
|
|
| 142 |
elem_id="image-container"
|
| 143 |
)
|
| 144 |
|
| 145 |
+
# Fila para seleccionar idioma, referencia, velocidad y generar voz
|
| 146 |
with gr.Row():
|
| 147 |
with gr.Column(scale=2):
|
| 148 |
language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
|
| 149 |
reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
|
| 150 |
speed_slider = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Velocidad del habla")
|
|
|
|
| 151 |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
|
| 152 |
generate_button = gr.Button("Generar voz", variant="primary")
|
| 153 |
|
|
|
|
| 158 |
# Configuración del botón para generar voz
|
| 159 |
generate_button.click(
|
| 160 |
predict,
|
| 161 |
+
inputs=[input_text, language_selector, reference_audio, speed_slider],
|
| 162 |
outputs=[generated_audio, metrics_output]
|
| 163 |
)
|
| 164 |
|