Spaces:
Running
Running
File size: 8,237 Bytes
316049c 8e92b0a 316049c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from rvc_infer import infer_audio
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import yt_dlp
import subprocess
import zipfile
import shutil
import urllib
print("downloading RVC models")
os.system("python dowoad_param.py")
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
rvc_models_dir = os.path.join(BASE_DIR, 'models')
def get_current_models(models_dir):
models_list = os.listdir(models_dir)
items_to_remove = ['hubert_base.pt', 'MODELS.txt', 'public_models.json', 'rmvpe.pt']
return [item for item in models_list if item not in items_to_remove]
def update_models_list():
models_l = get_current_models(rvc_models_dir)
return gr.update(choices=models_l)
def extract_zip(extraction_folder, zip_name):
os.makedirs(extraction_folder)
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
zip_ref.extractall(extraction_folder)
os.remove(zip_name)
index_filepath, model_filepath = None, None
for root, dirs, files in os.walk(extraction_folder):
for name in files:
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
index_filepath = os.path.join(root, name)
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
model_filepath = os.path.join(root, name)
if not model_filepath:
raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
# move model and index file to extraction folder
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
if index_filepath:
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
# remove any unnecessary nested folders
for filepath in os.listdir(extraction_folder):
if os.path.isdir(os.path.join(extraction_folder, filepath)):
shutil.rmtree(os.path.join(extraction_folder, filepath))
def download_online_model(url, dir_name, progress=gr.Progress()):
try:
progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
zip_name = url.split('/')[-1]
extraction_folder = os.path.join(rvc_models_dir, dir_name)
if os.path.exists(extraction_folder):
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
if 'pixeldrain.com' in url:
url = f'https://pixeldrain.com/api/file/{zip_name}'
urllib.request.urlretrieve(url, zip_name)
progress(0.5, desc='[~] Extracting zip...')
extract_zip(extraction_folder, zip_name)
return f'[+] {dir_name} Model successfully downloaded!'
except Exception as e:
raise gr.Error(str(e))
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
sample_rate, audio_data = read(file_path)
audio_array = np.asarray(audio_data, dtype=np.int16)
return sample_rate, audio_array
CSS = """
"""
with gr.Blocks(theme="Hev832/Applio", fill_width=True, css=CSS) as demo:
gr.Markdown("# RVC INFER DEMOS ")
gr.Markdown(f"# recommended using colab version with more feature!<br> [![Open In Collab](https://img.shields.io/badge/google_colab-F9AB00?style=flat-square&logo=googlecolab&logoColor=white)](https://colab.research.google.com/drive/1bM1LB2__WNFxX8pyZmUPQZYq7dg58YWG?usp=sharing) ")
with gr.Tab("Inferenece"):
gr.Markdown("in progress")
model_name = gr.Dropdown(label='Voice Models', info='Models folder "rvc_infer --> models". After new models are added into this folder, click the refresh button')
ref_btn = gr.Button('Refresh Models', variant='primary')
input_audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Accordion("Settings", open=False):
f0_change = gr.Slider(label="f0 change", minimum=-12, maximum=12, step=1, value=0)
f0_method = gr.Dropdown(label="f0 method", choices=["rmvpe+", "rmvpe", "fcpe", " hybrid[rmvpe+fcpe]"], value="rmvpe+")
min_pitch = gr.Textbox(label="min pitch", lines=1, value="-12")
max_pitch = gr.Textbox(label="max pitch", lines=1, value="12")
crepe_hop_length = gr.Slider(label="crepe_hop_length", minimum=0, maximum=256, step=1, value=128)
index_rate = gr.Slider(label="index_rate", minimum=0, maximum=1.0, step=0.01, value=0.75)
filter_radius = gr.Slider(label="filter_radius", minimum=0, maximum=10.0, step=0.01, value=3)
rms_mix_rate = gr.Slider(label="rms_mix_rate", minimum=0, maximum=1.0, step=0.01, value=0.25)
protect = gr.Slider(label="protect", minimum=0, maximum=1.0, step=0.01, value=0.33)
with gr.Accordion("Advanced Settings", open=False):
split_infer = gr.Checkbox(label="split_infer", value=False)
min_silence = gr.Slider(label="min_silence", minimum=0, maximum=1000, step=1, value=500)
silence_threshold = gr.Slider(label="silence_threshold", minimum=-1000, maximum=1000, step=1, value=-50)
seek_step = gr.Slider(label="seek_step", minimum=0, maximum=100, step=1, value=0)
keep_silence = gr.Slider(label="keep_silence", minimum=-1000, maximum=1000, step=1, value=100)
do_formant = gr.Checkbox(label="do_formant", value=False)
quefrency = gr.Slider(label="quefrency", minimum=0, maximum=100, step=1, value=0)
timbre = gr.Slider(label="timbre", minimum=0, maximum=100, step=1, value=1)
f0_autotune = gr.Checkbox(label="f0_autotune", value=False)
audio_format = gr.Dropdown(label="audio_format", choices=["wav"], value="wav", visible=False)
resample_sr = gr.Slider(label="resample_sr", minimum=0, maximum=100, step=1, value=0)
hubert_model_path = gr.Textbox(label="hubert_model_path", lines=1, value="hubert_base.pt", visible=False)
rmvpe_model_path = gr.Textbox(label="rmvpe_model_path", lines=1, value="rmvpe.pt", visible=False)
fcpe_model_path = gr.Textbox(label="fcpe_model_path", lines=1, value="fcpe.pt", visible=False)
submit_inference = gr.Button('Inference', variant='primary')
result_audio = gr.Audio("Output Audio")
with gr.Tab("Download Model"):
gr.Markdown("## Download Model for infernece")
url_input = gr.Textbox(label="Model URL", placeholder="Enter the URL of the model")
dir_name_input = gr.Textbox(label="Directory Name", placeholder="Enter the directory name")
output = gr.Textbox(label="Output Models")
download_button = gr.Button("Download Model")
download_button.click(download_online_model, inputs=[url_input, dir_name_input], outputs=output)
with gr.Tab(" Credits"):
gr.Markdown(
"""
this project made by [Blane187](https://huggingface.co/Blane187) with Improvements by [John6666](https://huggingfce.co/John6666)
""")
ref_btn.click(update_models_list, None, outputs=model_name)
gr.on(
triggers=[submit_inference.click],
fn=infer_audio,
inputs=[model_name, input_audio, f0_change, f0_method, min_pitch, max_pitch, crepe_hop_length, index_rate,
filter_radius, rms_mix_rate, protect, split_infer, min_silence, silence_threshold, seek_step,
keep_silence, do_formant, quefrency, timbre, f0_autotune, audio_format, resample_sr,
hubert_model_path, rmvpe_model_path, fcpe_model_path],
outputs=[result_audio],
queue=True,
show_api=True,
show_progress="full",
)
demo.queue()
demo.launch(debug=True,share=True,show_api=False)
|