File size: 12,728 Bytes
f714b01
fb01d13
f714b01
 
 
 
 
 
fcdf9f0
1d5e556
 
 
 
 
a528e66
a71493c
1d5e556
 
f714b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5e556
f714b01
1d5e556
3bcbfb1
 
f714b01
3bcbfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f714b01
c4f1727
2f0f296
1d60034
78953d9
2f0f296
fe5759e
 
78953d9
c4f1727
 
fb01d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import gradio as gr
import os, gc, copy, torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
title = "RWKV-4-Raven-7B-v9-Eng99%-Other1%-20230412-ctx8192"

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)

from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16')
from rwkv.utils import PIPELINE, PIPELINE_ARGS
pipeline = PIPELINE(model, "20B_tokenizer.json")

def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Input:
{input}

# Response:
"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

# Instruction:
{instruction}

# Response:
"""

def evaluate(
    instruction,
    input=None,
    token_count=200,
    temperature=1.0,
    top_p=0.7,
    presencePenalty = 0.1,
    countPenalty = 0.1,
):
    args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
                     alpha_frequency = countPenalty,
                     alpha_presence = presencePenalty,
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [0]) # stop generation whenever you see any token here

    instruction = instruction.strip()
    input = input.strip()
    ctx = generate_prompt(instruction, input)
    
    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
    
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1
        
        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Tell me about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4],
    ["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.0, 0.5, 0.2, 0.2],
    ["Write a song about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4],
    ["Explain the following metaphor: Life is like cats.", "", 150, 1.0, 0.5, 0.4, 0.4],
    ["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.0, 0.5, 0.4, 0.4],
    ["Generate a list of adjectives that describe a person as brave.", "", 150, 1.0, 0.5, 0.4, 0.4],
    ["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.0, 0.5, 0.4, 0.4],
]

chat_intro = '''The following is a coherent verbose detailed conversation between an AI girl named <|bot|> and <|user|>. One day, they meet at a café.
Note the following important facts about <|bot|>:
1. <|bot|> is very intelligent, creative and friendly.
2. <|bot|> likes to tell <|user|> a lot about herself and her opinions.
3. <|bot|> usually gives <|user|> kind, helpful and informative advices.

<|user|>: Hello, how are you doing?

<|bot|>: Hi! Thanks, I'm fine. What about you?

<|user|>: I am fine. It's nice to see you. Look, here is a store selling tea and juice. We can go and take a look. Would you like to chat with me for a while?

<|bot|>: Sure. Let's go inside. What would you like to talk about? I'm listening.
'''

def user(message, chatbot):
    chatbot = chatbot or []
    print(f"User: {message}")
    return "", chatbot + [[message, None]]

def alternative(chatbot, history):
    if not chatbot or not history:
        return chatbot, history
    
    chatbot[-1][1] = None
    history[0] = copy.deepcopy(history[1])

    return chatbot, history

def chat(
        prompt,
        user,
        bot,
        chatbot,
        history,
        temperature=1.0,
        top_p=0.8,
        presence_penalty=0.1,
        count_penalty=0.1,
):
    args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
                         alpha_frequency=float(count_penalty),
                         alpha_presence=float(presence_penalty),
                         token_ban=[],  # ban the generation of some tokens
                         token_stop=[])  # stop generation whenever you see any token here
    
    if not chatbot:
        return chatbot, history

    message = chatbot[-1][0]
    message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
    ctx = f"{user}: {message}\n\n{bot}:"

    # gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    # print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')

    if not history:
        prompt = prompt.replace("<|user|>", user.strip())
        prompt = prompt.replace("<|bot|>", bot.strip())
        prompt = prompt.strip()
        prompt = f"\n{prompt}\n\n"

        out, state = model.forward(pipeline.encode(prompt), None)
        history = [state, None, []]  # [state, state_pre, tokens]
        print("History reloaded.")

    [state, _, all_tokens] = history
    state_pre_0 = copy.deepcopy(state)

    out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
    state_pre_1 = copy.deepcopy(state)    # For recovery

    print("Bot: ", end='')

    begin = len(all_tokens)
    out_last = begin
    out_str: str = ''
    occurrence = {}
    for i in range(300):
        if i <= 0:
            nl_bias = -float('inf')
        elif i <= 30:
            nl_bias = (i - 30) * 0.1
        elif i <= 130:
            nl_bias = 0
        else:
            nl_bias = (i - 130) * 0.25
        out[187] += nl_bias
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        next_tokens = [token]
        if token == 0:
            next_tokens = pipeline.encode('\n\n')
        all_tokens += next_tokens

        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        out, state = model.forward(next_tokens, state)

        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            print(tmp, end='', flush=True)
            out_last = begin + i + 1
            out_str += tmp

            chatbot[-1][1] = out_str.strip()
            history = [state, all_tokens]
            yield chatbot, history

        out_str = pipeline.decode(all_tokens[begin:])
        out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')

        if '\n\n' in out_str:
            break

        # State recovery
        if f'{user}:' in out_str or f'{bot}:' in out_str:
            idx_user = out_str.find(f'{user}:')
            idx_user = len(out_str) if idx_user == -1 else idx_user
            idx_bot = out_str.find(f'{bot}:')
            idx_bot = len(out_str) if idx_bot == -1 else idx_bot
            idx = min(idx_user, idx_bot)

            if idx < len(out_str):
                out_str = f" {out_str[:idx].strip()}\n\n"
                tokens = pipeline.encode(out_str)

                all_tokens = all_tokens[:begin] + tokens
                out, state = model.forward(tokens, state_pre_1)
                break

    gc.collect()
    torch.cuda.empty_cache()

    chatbot[-1][1] = out_str.strip()
    history = [state, state_pre_0, all_tokens]
    yield chatbot, history

with gr.Blocks(title=title) as demo:
    gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🐦Raven - {title}</h1>\n</div>")
    with gr.Tab("Instruct"):
        gr.Markdown(f"Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen 1024. It is finetuned on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), codealpaca and more. For best results, *** keep you prompt short and clear ***.")
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
                input = gr.Textbox(lines=2, label="Input", placeholder="none")
                token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit", variant="primary")
                    clear = gr.Button("Clear", variant="secondary")
                output = gr.Textbox(label="Output", lines=5)
        data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
    
    with gr.Tab("Chat"):
        gr.Markdown(f'''*** <b>Default Chat Scenario: You (Bob) and Bot (Alice) meet at a café.</b> ***\nIf you want to change the scenario, make sure to use an empty new line to separate different people's words. Also, make sure there is no empty new lines within one person's lines. Changes only take effect after clearing.''', label="Description")
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot()
                state = gr.State()
                message = gr.Textbox(label="Message")
                with gr.Row():
                    send = gr.Button("Send", variant="primary")
                    alt = gr.Button("Alternative", variant="secondary")
                    clear = gr.Button("Clear", variant="secondary")
            with gr.Column():
                with gr.Row():
                    user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
                    bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
                prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.7)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2)
        chat_inputs = [
            prompt,
            user_name,
            bot_name,
            chatbot,
            state,
            temperature,
            top_p,
            presence_penalty,
            count_penalty
        ]
        chat_outputs = [chatbot, state]
        message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
        send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
        alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
        clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)

demo.queue(max_size=10)
demo.launch(share=True)