import gradio as gr import os, gc, torch from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # Instruction: {instruction} # Input: {input} # Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {instruction} # Response: """ def evaluate( instruction, input=None, temperature=1.0, top_p=0.75, max_new_tokens=200, **kwargs, ): prompt = generate_prompt(instruction, input) return prompt g = gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas." ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider( minimum=1, maximum=256, step=1, value=200, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="🐦Raven-RWKV 7B", description="Raven-RWKV 7B is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and more.", ) g.queue(concurrency_count=1, max_size=10) g.launch(share=False)