Spaces:
Runtime error
Runtime error
BoburAmirov
commited on
Commit
•
19d6a92
1
Parent(s):
537c31f
Add application file
Browse files- packages.txt +1 -0
- .gitattributes +1 -1
- .gitignore +1 -0
- app.py +184 -0
- requirements.txt +3 -0
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
.gitattributes
CHANGED
@@ -32,4 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import time
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import yt_dlp as youtube_dl
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
+
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
|
13 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
14 |
+
BATCH_SIZE = 8
|
15 |
+
FILE_LIMIT_MB = 1000
|
16 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
17 |
+
|
18 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
pipe = pipeline(
|
21 |
+
task="automatic-speech-recognition",
|
22 |
+
model=MODEL_NAME,
|
23 |
+
chunk_length_s=30,
|
24 |
+
device=device,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def chunks_to_srt(chunks):
|
29 |
+
srt_format = ""
|
30 |
+
for i, chunk in enumerate(chunks, 1):
|
31 |
+
start_time, end_time = chunk['timestamp']
|
32 |
+
start_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(start_time // 3600), int((start_time % 3600) // 60),
|
33 |
+
int(start_time % 60), int((start_time % 1) * 1000))
|
34 |
+
end_time_hms = "{:02}:{:02}:{:02},{:03}".format(int(end_time // 3600), int((end_time % 3600) // 60),
|
35 |
+
int(end_time % 60), int((end_time % 1) * 1000))
|
36 |
+
srt_format += f"{i}\n{start_time_hms} --> {end_time_hms}\n{chunk['text']}\n\n"
|
37 |
+
return srt_format
|
38 |
+
|
39 |
+
|
40 |
+
def transcribe(inputs, task, return_timestamps, language):
|
41 |
+
if inputs is None:
|
42 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
43 |
+
|
44 |
+
# Map the language names to their corresponding codes
|
45 |
+
language_codes = {"English": "en", "Uzbek": "uz"}
|
46 |
+
language_code = language_codes.get(language, "en") # Default to "en" if the language is not found
|
47 |
+
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"},
|
48 |
+
return_timestamps=return_timestamps)
|
49 |
+
|
50 |
+
if return_timestamps:
|
51 |
+
return chunks_to_srt(result['chunks'])
|
52 |
+
else:
|
53 |
+
return result['text']
|
54 |
+
|
55 |
+
|
56 |
+
def _return_yt_html_embed(yt_url):
|
57 |
+
video_id = yt_url.split("?v=")[-1]
|
58 |
+
HTML_str = (
|
59 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
60 |
+
" </center>"
|
61 |
+
)
|
62 |
+
return HTML_str
|
63 |
+
|
64 |
+
|
65 |
+
def download_yt_audio(yt_url, filename):
|
66 |
+
info_loader = youtube_dl.YoutubeDL()
|
67 |
+
|
68 |
+
try:
|
69 |
+
info = info_loader.extract_info(yt_url, download=False)
|
70 |
+
except youtube_dl.utils.DownloadError as err:
|
71 |
+
raise gr.Error(str(err))
|
72 |
+
|
73 |
+
file_length = info["duration_string"]
|
74 |
+
file_h_m_s = file_length.split(":")
|
75 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
76 |
+
|
77 |
+
if len(file_h_m_s) == 1:
|
78 |
+
file_h_m_s.insert(0, 0)
|
79 |
+
if len(file_h_m_s) == 2:
|
80 |
+
file_h_m_s.insert(0, 0)
|
81 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
82 |
+
|
83 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
84 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
85 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
86 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
87 |
+
|
88 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
89 |
+
|
90 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
91 |
+
try:
|
92 |
+
ydl.download([yt_url])
|
93 |
+
except youtube_dl.utils.ExtractorError as err:
|
94 |
+
raise gr.Error(str(err))
|
95 |
+
|
96 |
+
|
97 |
+
def yt_transcribe(yt_url, task, return_timestamps, language, max_filesize=75.0):
|
98 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
99 |
+
|
100 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
101 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
102 |
+
download_yt_audio(yt_url, filepath)
|
103 |
+
with open(filepath, "rb") as f:
|
104 |
+
inputs = f.read()
|
105 |
+
|
106 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
107 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
108 |
+
|
109 |
+
# Map the language names to their corresponding codes
|
110 |
+
language_codes = {"English": "en", "Uzbek": "uz"}
|
111 |
+
language_code = language_codes.get(language, "en") # Default to "en" if the language is not found
|
112 |
+
|
113 |
+
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": f"<|{language_code}|>"},
|
114 |
+
return_timestamps=return_timestamps)
|
115 |
+
|
116 |
+
if return_timestamps:
|
117 |
+
return html_embed_str, chunks_to_srt(result['chunks'])
|
118 |
+
else:
|
119 |
+
return html_embed_str, result['text']
|
120 |
+
|
121 |
+
|
122 |
+
demo = gr.Blocks()
|
123 |
+
|
124 |
+
mf_transcribe = gr.Interface(
|
125 |
+
fn=transcribe,
|
126 |
+
inputs=[
|
127 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
128 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
129 |
+
gr.inputs.Checkbox(label="Return timestamps"),
|
130 |
+
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
|
131 |
+
],
|
132 |
+
outputs="text",
|
133 |
+
layout="horizontal",
|
134 |
+
theme="huggingface",
|
135 |
+
title="Whisper Large V3: Transcribe Audio",
|
136 |
+
description=(
|
137 |
+
"\n\n"
|
138 |
+
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
|
139 |
+
),
|
140 |
+
allow_flagging="never",
|
141 |
+
)
|
142 |
+
|
143 |
+
file_transcribe = gr.Interface(
|
144 |
+
fn=transcribe,
|
145 |
+
inputs=[
|
146 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
147 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
148 |
+
gr.inputs.Checkbox(label="Return timestamps"),
|
149 |
+
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
|
150 |
+
],
|
151 |
+
outputs="text",
|
152 |
+
layout="horizontal",
|
153 |
+
theme="huggingface",
|
154 |
+
title="Whisper Large V3: Transcribe Audio File",
|
155 |
+
description=(
|
156 |
+
"\n\n"
|
157 |
+
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
|
158 |
+
),
|
159 |
+
allow_flagging="never",
|
160 |
+
)
|
161 |
+
|
162 |
+
yt_transcribe = gr.Interface(
|
163 |
+
fn=yt_transcribe,
|
164 |
+
inputs=[
|
165 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
166 |
+
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
167 |
+
gr.inputs.Checkbox(label="Return timestamps"),
|
168 |
+
gr.inputs.Dropdown(choices=["English", "Uzbek"], label="Language"),
|
169 |
+
],
|
170 |
+
outputs=["html", "text"],
|
171 |
+
layout="horizontal",
|
172 |
+
theme="huggingface",
|
173 |
+
title="Whisper Large V3: Transcribe YouTube",
|
174 |
+
description=(
|
175 |
+
"\n\n"
|
176 |
+
"<center>⭐️Brought to you by <a href='https://note.com/sangmin/n/n9813f2064a6a'>Chiomirai School</a>⭐️</center>"
|
177 |
+
),
|
178 |
+
allow_flagging="never",
|
179 |
+
)
|
180 |
+
|
181 |
+
with demo:
|
182 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
183 |
+
|
184 |
+
demo.launch(enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
yt-dlp
|