File size: 4,222 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Inference code for ChatGLM.
Adapted from https://huggingface.co/THUDM/chatglm-6b/blob/main/modeling_chatglm.py.
"""
import re

import torch
from transformers.generation.logits_process import LogitsProcessor


class InvalidScoreLogitsProcessor(LogitsProcessor):
    def __call__(
        self, input_ids: torch.LongTensor, scores: torch.FloatTensor
    ) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 5] = 5e4
        return scores


invalid_score_processor = InvalidScoreLogitsProcessor()


def process_response(response):
    response = response.strip()
    response = response.replace("[[训练时间]]", "2023年")
    punkts = [
        [",", ","],
        ["!", "!"],
        [":", ":"],
        [";", ";"],
        ["\?", "?"],
    ]
    for item in punkts:
        response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
        response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
    return response


def recover_message_list(prompt):
    role_token_pattern = "|".join(
        [re.escape(r) for r in ["<|system|>", "<|user|>", "<|assistant|>"]]
    )
    role = None
    last_end_idx = -1
    message_list = []
    for match in re.finditer(role_token_pattern, prompt):
        if role:
            messge = {}
            if role == "<|system|>":
                messge["role"] = "system"
            elif role == "<|user|>":
                messge["role"] = "user"
            else:
                messge["role"] = "assistant"
            messge["content"] = prompt[last_end_idx + 1 : match.start()]
            message_list.append(messge)

        role = prompt[match.start() : match.end()]
        last_end_idx = match.end()

    return message_list


@torch.inference_mode()
def generate_stream_chatglm(
    model,
    tokenizer,
    params,
    device,
    context_len=2048,
    stream_interval=2,
    judge_sent_end=False,
):
    prompt = params["prompt"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    max_new_tokens = int(params.get("max_new_tokens", 256))
    echo = params.get("echo", True)

    model_type = str(type(model)).lower()
    if "peft" in model_type:
        model_type = str(type(model.base_model.model)).lower()

    if "chatglm3" in model_type:
        message_list = recover_message_list(prompt)
        inputs = tokenizer.build_chat_input(
            query=message_list[-1]["content"], history=message_list[:-1], role="user"
        ).to(model.device)
    else:
        inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
    input_echo_len = len(inputs["input_ids"][0])

    gen_kwargs = {
        "max_length": max_new_tokens + input_echo_len,
        "do_sample": True if temperature > 1e-5 else False,
        "top_p": top_p,
        "repetition_penalty": repetition_penalty,
        "logits_processor": [invalid_score_processor],
    }
    if temperature > 1e-5:
        gen_kwargs["temperature"] = temperature

    total_len = 0
    for total_ids in model.stream_generate(**inputs, **gen_kwargs):
        total_ids = total_ids.tolist()[0]
        total_len = len(total_ids)
        if echo:
            output_ids = total_ids
        else:
            output_ids = total_ids[input_echo_len:]
        response = tokenizer.decode(output_ids)
        response = process_response(response)

        yield {
            "text": response,
            "usage": {
                "prompt_tokens": input_echo_len,
                "completion_tokens": total_len - input_echo_len,
                "total_tokens": total_len,
            },
            "finish_reason": None,
        }

    # TODO: ChatGLM stop when it reach max length
    # Only last stream result contains finish_reason, we set finish_reason as stop
    ret = {
        "text": response,
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": total_len - input_echo_len,
            "total_tokens": total_len,
        },
        "finish_reason": "stop",
    }
    yield ret