Spaces:
Running
Running
File size: 12,559 Bytes
6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
"""
The gradio demo server for chatting with a large multimodal model.
Usage:
python3 -m fastchat.serve.controller
python3 -m fastchat.serve.sglang_worker --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf
python3 -m fastchat.serve.gradio_web_server_multi --share --vision-arena
"""
import json
import os
import time
import gradio as gr
from gradio.data_classes import FileData
import numpy as np
from src.constants import (
TEXT_MODERATION_MSG,
IMAGE_MODERATION_MSG,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
)
from src.serve.gradio_web_server import (
get_model_description_md,
acknowledgment_md,
bot_response,
get_ip,
disable_btn,
State,
_prepare_text_with_image,
get_conv_log_filename,
get_remote_logger,
)
from src.utils import (
build_logger,
moderation_filter,
image_moderation_filter,
)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True, visible=True)
disable_btn = gr.Button(interactive=False)
invisible_btn = gr.Button(interactive=False, visible=False)
visible_image_column = gr.Image(visible=True)
invisible_image_column = gr.Image(visible=False)
def get_vqa_sample():
random_sample = np.random.choice(vqa_samples)
question, path = random_sample["question"], random_sample["path"]
res = {"text": "", "files": [path]}
return (res, path)
def set_visible_image(textbox):
images = textbox["files"]
if len(images) == 0:
return invisible_image_column
elif len(images) > 1:
gr.Warning(
"We only support single image conversations. Please start a new round if you would like to chat using this image."
)
return visible_image_column
def set_invisible_image():
return invisible_image_column
def add_image(textbox):
images = textbox["files"]
if len(images) == 0:
return None
return images[0]
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
filename = get_conv_log_filename(state.is_vision, state.has_csam_image)
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
def upvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"upvote. ip: {ip}")
vote_last_response(state, "upvote", model_selector, request)
return (None,) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"downvote. ip: {ip}")
vote_last_response(state, "downvote", model_selector, request)
return (None,) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"flag. ip: {ip}")
vote_last_response(state, "flag", model_selector, request)
return (None,) + (disable_btn,) * 3
def regenerate(state, request: gr.Request):
ip = get_ip(request)
logger.info(f"regenerate. ip: {ip}")
if not state.regen_support:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
state.conv.update_last_message(None)
return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history. ip: {ip}")
state = None
return (state, [], None) + (disable_btn,) * 5
def clear_history_example(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history_example. ip: {ip}")
state = None
return (state, []) + (disable_btn,) * 5
def moderate_input(text, all_conv_text, model_list, images, ip):
text_flagged = moderation_filter(all_conv_text, model_list)
# flagged = moderation_filter(text, [state.model_name])
nsfw_flagged, csam_flagged = False, False
if len(images) > 0:
nsfw_flagged, csam_flagged = image_moderation_filter(images[0])
image_flagged = nsfw_flagged or csam_flagged
if text_flagged or image_flagged:
logger.info(f"violate moderation. ip: {ip}. text: {all_conv_text}")
if text_flagged and not image_flagged:
# overwrite the original text
text = TEXT_MODERATION_MSG
elif not text_flagged and image_flagged:
text = IMAGE_MODERATION_MSG
elif text_flagged and image_flagged:
text = MODERATION_MSG
return text, image_flagged, csam_flagged
def add_text(state, model_selector, chat_input, request: gr.Request):
text, images = chat_input["text"], chat_input["files"]
ip = get_ip(request)
logger.info(f"add_text. ip: {ip}. len: {len(text)}")
if state is None:
state = State(model_selector, is_vision=True)
if len(text) <= 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), None) + (no_change_btn,) * 5
all_conv_text = state.conv.get_prompt()
all_conv_text = all_conv_text[-2000:] + "\nuser: " + text
text, image_flagged, csam_flag = moderate_input(
text, all_conv_text, [state.model_name], images, ip
)
if image_flagged:
logger.info(f"image flagged. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), {"text": IMAGE_MODERATION_MSG}) + (
no_change_btn,
) * 5
if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), {"text": CONVERSATION_LIMIT_MSG}) + (
no_change_btn,
) * 5
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
text = _prepare_text_with_image(state, text, images, csam_flag=csam_flag)
state.conv.append_message(state.conv.roles[0], text)
state.conv.append_message(state.conv.roles[1], None)
return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5
def build_single_vision_language_model_ui(
models, add_promotion_links=False, random_questions=None
):
promotion = (
"""
- | [GitHub](https://github.com/lm-sys/FastChat) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
**βοΈ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**
Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image."""
if add_promotion_links
else ""
)
notice_markdown = f"""
# ποΈ Chat with Open Large Vision-Language Models
{promotion}
"""
state = gr.State()
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Group():
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
with gr.Accordion(
f"π Expand to see the descriptions of {len(models)} models", open=False
):
model_description_md = get_model_description_md(models)
gr.Markdown(model_description_md, elem_id="model_description_markdown")
with gr.Row():
textbox = gr.MultimodalTextbox(
file_types=["image"],
show_label=False,
placeholder="Click add or drop your image here",
container=True,
render=False,
elem_id="input_box",
)
with gr.Column(scale=2, visible=False) as image_column:
imagebox = gr.Image(
type="pil",
show_label=False,
interactive=False,
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot", label="Scroll down and start chatting", height=550
)
with gr.Row():
textbox.render()
# with gr.Column(scale=1, min_width=50):
# send_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons"):
if random_questions:
global vqa_samples
with open(random_questions, "r") as f:
vqa_samples = json.load(f)
random_btn = gr.Button(value="π² Random Example", interactive=True)
upvote_btn = gr.Button(value="π Upvote", interactive=False)
downvote_btn = gr.Button(value="π Downvote", interactive=False)
flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
cur_dir = os.path.dirname(os.path.abspath(__file__))
examples = gr.Examples(
examples=[
{
"text": "How can I prepare a delicious meal using these ingredients?",
"files": [f"{cur_dir}/example_images/fridge.jpg"],
},
{
"text": "What might the woman on the right be thinking about?",
"files": [f"{cur_dir}/example_images/distracted.jpg"],
},
],
inputs=[textbox],
)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=2048,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
if add_promotion_links:
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
model_selector.change(
clear_history, None, [state, chatbot, textbox] + btn_list
).then(set_visible_image, [textbox], [image_column])
examples.dataset.click(clear_history_example, None, [state, chatbot] + btn_list)
textbox.input(add_image, [textbox], [imagebox]).then(
set_visible_image, [textbox], [image_column]
).then(clear_history_example, None, [state, chatbot] + btn_list)
textbox.submit(
add_text,
[state, model_selector, textbox],
[state, chatbot, textbox] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
if random_questions:
random_btn.click(
get_vqa_sample, # First, get the VQA sample
[], # Pass the path to the VQA samples
[textbox, imagebox], # Outputs are textbox and imagebox
).then(set_visible_image, [textbox], [image_column]).then(
clear_history_example, None, [state, chatbot] + btn_list
)
return [state, model_selector]
|