File size: 12,559 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""
The gradio demo server for chatting with a large multimodal model.

Usage:
python3 -m fastchat.serve.controller
python3 -m fastchat.serve.sglang_worker --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf
python3 -m fastchat.serve.gradio_web_server_multi --share --vision-arena
"""

import json
import os
import time

import gradio as gr
from gradio.data_classes import FileData
import numpy as np

from src.constants import (
    TEXT_MODERATION_MSG,
    IMAGE_MODERATION_MSG,
    MODERATION_MSG,
    CONVERSATION_LIMIT_MSG,
    INPUT_CHAR_LEN_LIMIT,
    CONVERSATION_TURN_LIMIT,
)
from src.serve.gradio_web_server import (
    get_model_description_md,
    acknowledgment_md,
    bot_response,
    get_ip,
    disable_btn,
    State,
    _prepare_text_with_image,
    get_conv_log_filename,
    get_remote_logger,
)
from src.utils import (
    build_logger,
    moderation_filter,
    image_moderation_filter,
)

logger = build_logger("gradio_web_server", "gradio_web_server.log")

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True, visible=True)
disable_btn = gr.Button(interactive=False)
invisible_btn = gr.Button(interactive=False, visible=False)
visible_image_column = gr.Image(visible=True)
invisible_image_column = gr.Image(visible=False)


def get_vqa_sample():
    random_sample = np.random.choice(vqa_samples)
    question, path = random_sample["question"], random_sample["path"]
    res = {"text": "", "files": [path]}
    return (res, path)


def set_visible_image(textbox):
    images = textbox["files"]
    if len(images) == 0:
        return invisible_image_column
    elif len(images) > 1:
        gr.Warning(
            "We only support single image conversations. Please start a new round if you would like to chat using this image."
        )

    return visible_image_column


def set_invisible_image():
    return invisible_image_column


def add_image(textbox):
    images = textbox["files"]
    if len(images) == 0:
        return None

    return images[0]


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    filename = get_conv_log_filename(state.is_vision, state.has_csam_image)
    with open(filename, "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": get_ip(request),
        }
        fout.write(json.dumps(data) + "\n")
    get_remote_logger().log(data)


def upvote_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"upvote. ip: {ip}")
    vote_last_response(state, "upvote", model_selector, request)
    return (None,) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"downvote. ip: {ip}")
    vote_last_response(state, "downvote", model_selector, request)
    return (None,) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"flag. ip: {ip}")
    vote_last_response(state, "flag", model_selector, request)
    return (None,) + (disable_btn,) * 3


def regenerate(state, request: gr.Request):
    ip = get_ip(request)
    logger.info(f"regenerate. ip: {ip}")
    if not state.regen_support:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
    state.conv.update_last_message(None)
    return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    ip = get_ip(request)
    logger.info(f"clear_history. ip: {ip}")
    state = None
    return (state, [], None) + (disable_btn,) * 5


def clear_history_example(request: gr.Request):
    ip = get_ip(request)
    logger.info(f"clear_history_example. ip: {ip}")
    state = None
    return (state, []) + (disable_btn,) * 5


def moderate_input(text, all_conv_text, model_list, images, ip):
    text_flagged = moderation_filter(all_conv_text, model_list)
    # flagged = moderation_filter(text, [state.model_name])
    nsfw_flagged, csam_flagged = False, False
    if len(images) > 0:
        nsfw_flagged, csam_flagged = image_moderation_filter(images[0])

    image_flagged = nsfw_flagged or csam_flagged
    if text_flagged or image_flagged:
        logger.info(f"violate moderation. ip: {ip}. text: {all_conv_text}")
        if text_flagged and not image_flagged:
            # overwrite the original text
            text = TEXT_MODERATION_MSG
        elif not text_flagged and image_flagged:
            text = IMAGE_MODERATION_MSG
        elif text_flagged and image_flagged:
            text = MODERATION_MSG

    return text, image_flagged, csam_flagged


def add_text(state, model_selector, chat_input, request: gr.Request):
    text, images = chat_input["text"], chat_input["files"]
    ip = get_ip(request)
    logger.info(f"add_text. ip: {ip}. len: {len(text)}")

    if state is None:
        state = State(model_selector, is_vision=True)

    if len(text) <= 0:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), None) + (no_change_btn,) * 5

    all_conv_text = state.conv.get_prompt()
    all_conv_text = all_conv_text[-2000:] + "\nuser: " + text

    text, image_flagged, csam_flag = moderate_input(
        text, all_conv_text, [state.model_name], images, ip
    )

    if image_flagged:
        logger.info(f"image flagged. ip: {ip}. text: {text}")
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), {"text": IMAGE_MODERATION_MSG}) + (
            no_change_btn,
        ) * 5

    if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
        logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), {"text": CONVERSATION_LIMIT_MSG}) + (
            no_change_btn,
        ) * 5

    text = text[:INPUT_CHAR_LEN_LIMIT]  # Hard cut-off
    text = _prepare_text_with_image(state, text, images, csam_flag=csam_flag)
    state.conv.append_message(state.conv.roles[0], text)
    state.conv.append_message(state.conv.roles[1], None)
    return (state, state.to_gradio_chatbot(), None) + (disable_btn,) * 5


def build_single_vision_language_model_ui(
    models, add_promotion_links=False, random_questions=None
):
    promotion = (
        """
- | [GitHub](https://github.com/lm-sys/FastChat) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |

**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**

Note: You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB. Click the "Random Example" button to chat with a random image."""
        if add_promotion_links
        else ""
    )

    notice_markdown = f"""
# πŸ”οΈ Chat with Open Large Vision-Language Models
{promotion}
"""

    state = gr.State()
    gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Group():
        with gr.Row(elem_id="model_selector_row"):
            model_selector = gr.Dropdown(
                choices=models,
                value=models[0] if len(models) > 0 else "",
                interactive=True,
                show_label=False,
                container=False,
            )

        with gr.Accordion(
            f"πŸ” Expand to see the descriptions of {len(models)} models", open=False
        ):
            model_description_md = get_model_description_md(models)
            gr.Markdown(model_description_md, elem_id="model_description_markdown")

    with gr.Row():
        textbox = gr.MultimodalTextbox(
            file_types=["image"],
            show_label=False,
            placeholder="Click add or drop your image here",
            container=True,
            render=False,
            elem_id="input_box",
        )

        with gr.Column(scale=2, visible=False) as image_column:
            imagebox = gr.Image(
                type="pil",
                show_label=False,
                interactive=False,
            )
        with gr.Column(scale=8):
            chatbot = gr.Chatbot(
                elem_id="chatbot", label="Scroll down and start chatting", height=550
            )

    with gr.Row():
        textbox.render()
        # with gr.Column(scale=1, min_width=50):
        #     send_btn = gr.Button(value="Send", variant="primary")

    with gr.Row(elem_id="buttons"):
        if random_questions:
            global vqa_samples
            with open(random_questions, "r") as f:
                vqa_samples = json.load(f)
            random_btn = gr.Button(value="🎲 Random Example", interactive=True)
        upvote_btn = gr.Button(value="πŸ‘  Upvote", interactive=False)
        downvote_btn = gr.Button(value="πŸ‘Ž  Downvote", interactive=False)
        flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
        regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=False)
        clear_btn = gr.Button(value="πŸ—‘οΈ  Clear", interactive=False)

    cur_dir = os.path.dirname(os.path.abspath(__file__))

    examples = gr.Examples(
        examples=[
            {
                "text": "How can I prepare a delicious meal using these ingredients?",
                "files": [f"{cur_dir}/example_images/fridge.jpg"],
            },
            {
                "text": "What might the woman on the right be thinking about?",
                "files": [f"{cur_dir}/example_images/distracted.jpg"],
            },
        ],
        inputs=[textbox],
    )

    with gr.Accordion("Parameters", open=False) as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.2,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        top_p = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.7,
            step=0.1,
            interactive=True,
            label="Top P",
        )
        max_output_tokens = gr.Slider(
            minimum=0,
            maximum=2048,
            value=1024,
            step=64,
            interactive=True,
            label="Max output tokens",
        )

    if add_promotion_links:
        gr.Markdown(acknowledgment_md, elem_id="ack_markdown")

    # Register listeners
    btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
    upvote_btn.click(
        upvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    downvote_btn.click(
        downvote_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    flag_btn.click(
        flag_last_response,
        [state, model_selector],
        [textbox, upvote_btn, downvote_btn, flag_btn],
    )
    regenerate_btn.click(regenerate, state, [state, chatbot, textbox] + btn_list).then(
        bot_response,
        [state, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )
    clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)

    model_selector.change(
        clear_history, None, [state, chatbot, textbox] + btn_list
    ).then(set_visible_image, [textbox], [image_column])
    examples.dataset.click(clear_history_example, None, [state, chatbot] + btn_list)

    textbox.input(add_image, [textbox], [imagebox]).then(
        set_visible_image, [textbox], [image_column]
    ).then(clear_history_example, None, [state, chatbot] + btn_list)

    textbox.submit(
        add_text,
        [state, model_selector, textbox],
        [state, chatbot, textbox] + btn_list,
    ).then(set_invisible_image, [], [image_column]).then(
        bot_response,
        [state, temperature, top_p, max_output_tokens],
        [state, chatbot] + btn_list,
    )

    if random_questions:
        random_btn.click(
            get_vqa_sample,  # First, get the VQA sample
            [],  # Pass the path to the VQA samples
            [textbox, imagebox],  # Outputs are textbox and imagebox
        ).then(set_visible_image, [textbox], [image_column]).then(
            clear_history_example, None, [state, chatbot] + btn_list
        )

    return [state, model_selector]