FIRE / src /model /make_delta.py
zhangbofei
feat: change to fstchat
6dc0c9c
"""
Make the delta weights by subtracting base weights.
Usage:
python3 -m fastchat.model.make_delta --base ~/model_weights/llama-13b --target ~/model_weights/vicuna-13b --delta ~/model_weights/vicuna-13b-delta --hub-repo-id lmsys/vicuna-13b-delta-v1.1
"""
import argparse
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
def make_delta(base_model_path, target_model_path, delta_path):
print(f"Loading the base model from {base_model_path}")
base = AutoModelForCausalLM.from_pretrained(
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
)
print(f"Loading the target model from {target_model_path}")
target = AutoModelForCausalLM.from_pretrained(
target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
)
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path, use_fast=False)
print("Calculating the delta")
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
assert name in base.state_dict()
param.data -= base.state_dict()[name]
print(f"Saving the delta to {delta_path}")
if args.hub_repo_id:
kwargs = {"push_to_hub": True, "repo_id": args.hub_repo_id}
else:
kwargs = {}
target.save_pretrained(delta_path, **kwargs)
target_tokenizer.save_pretrained(delta_path, **kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base-model-path", type=str, required=True)
parser.add_argument("--target-model-path", type=str, required=True)
parser.add_argument("--delta-path", type=str, required=True)
parser.add_argument("--hub-repo-id", type=str)
args = parser.parse_args()
make_delta(args.base_model_path, args.target_model_path, args.delta_path)