Spaces:
Running
Running
""" | |
A model worker that executes the model. | |
""" | |
import argparse | |
import base64 | |
import gc | |
import json | |
import os | |
from typing import List, Optional | |
import uuid | |
import torch | |
import torch.nn.functional as F | |
from transformers import set_seed | |
import uvicorn | |
from src.constants import ErrorCode, SERVER_ERROR_MSG | |
from src.model.model_adapter import ( | |
load_model, | |
add_model_args, | |
get_generate_stream_function, | |
) | |
from src.modules.awq import AWQConfig | |
from src.modules.exllama import ExllamaConfig | |
from src.modules.xfastertransformer import XftConfig | |
from src.modules.gptq import GptqConfig | |
from src.serve.base_model_worker import BaseModelWorker, app | |
from src.utils import ( | |
build_logger, | |
get_context_length, | |
str_to_torch_dtype, | |
) | |
worker_id = str(uuid.uuid4())[:8] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
class ModelWorker(BaseModelWorker): | |
def __init__( | |
self, | |
controller_addr: str, | |
worker_addr: str, | |
worker_id: str, | |
model_path: str, | |
model_names: List[str], | |
limit_worker_concurrency: int, | |
no_register: bool, | |
device: str, | |
num_gpus: int, | |
max_gpu_memory: str, | |
revision: str = None, | |
dtype: Optional[torch.dtype] = None, | |
load_8bit: bool = False, | |
cpu_offloading: bool = False, | |
gptq_config: Optional[GptqConfig] = None, | |
awq_config: Optional[AWQConfig] = None, | |
exllama_config: Optional[ExllamaConfig] = None, | |
xft_config: Optional[XftConfig] = None, | |
stream_interval: int = 2, | |
conv_template: Optional[str] = None, | |
embed_in_truncate: bool = False, | |
seed: Optional[int] = None, | |
debug: bool = False, | |
**kwargs, | |
): | |
super().__init__( | |
controller_addr, | |
worker_addr, | |
worker_id, | |
model_path, | |
model_names, | |
limit_worker_concurrency, | |
conv_template=conv_template, | |
) | |
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...") | |
self.model, self.tokenizer = load_model( | |
model_path, | |
revision=revision, | |
device=device, | |
num_gpus=num_gpus, | |
max_gpu_memory=max_gpu_memory, | |
dtype=dtype, | |
load_8bit=load_8bit, | |
cpu_offloading=cpu_offloading, | |
gptq_config=gptq_config, | |
awq_config=awq_config, | |
exllama_config=exllama_config, | |
xft_config=xft_config, | |
debug=debug, | |
) | |
self.device = device | |
if self.tokenizer.pad_token == None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.context_len = get_context_length(self.model.config) | |
self.generate_stream_func = get_generate_stream_function(self.model, model_path) | |
self.stream_interval = stream_interval | |
self.embed_in_truncate = embed_in_truncate | |
self.seed = seed | |
if not no_register: | |
self.init_heart_beat() | |
def generate_stream_gate(self, params): | |
if self.device == "npu": | |
import torch_npu | |
torch_npu.npu.set_device("npu:0") | |
self.call_ct += 1 | |
try: | |
if self.seed is not None: | |
set_seed(self.seed) | |
for output in self.generate_stream_func( | |
self.model, | |
self.tokenizer, | |
params, | |
self.device, | |
self.context_len, | |
self.stream_interval, | |
): | |
ret = { | |
"text": output["text"], | |
"error_code": 0, | |
} | |
if "usage" in output: | |
ret["usage"] = output["usage"] | |
if "finish_reason" in output: | |
ret["finish_reason"] = output["finish_reason"] | |
if "logprobs" in output: | |
ret["logprobs"] = output["logprobs"] | |
yield json.dumps(ret).encode() + b"\0" | |
except torch.cuda.OutOfMemoryError as e: | |
ret = { | |
"text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except (ValueError, RuntimeError) as e: | |
ret = { | |
"text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
"error_code": ErrorCode.INTERNAL_ERROR, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
def generate_gate(self, params): | |
for x in self.generate_stream_gate(params): | |
pass | |
return json.loads(x[:-1].decode()) | |
def __process_embed_chunk(self, input_ids, attention_mask, **model_type_dict): | |
if model_type_dict.get("is_bert"): | |
model_output = self.model(input_ids) | |
if model_type_dict.get("is_robert"): | |
data = model_output.last_hidden_state | |
else: | |
data = model_output[0] | |
elif model_type_dict.get("is_t5"): | |
model_output = self.model(input_ids, decoder_input_ids=input_ids) | |
data = model_output.encoder_last_hidden_state | |
else: | |
model_output = self.model(input_ids, output_hidden_states=True) | |
if model_type_dict.get("is_chatglm"): | |
data = model_output.hidden_states[-1].transpose(0, 1) | |
else: | |
data = model_output.hidden_states[-1] | |
if hasattr(self.model, "use_cls_pooling") and self.model.use_cls_pooling: | |
sum_embeddings = data[:, 0] | |
else: | |
mask = attention_mask.unsqueeze(-1).expand(data.size()).float() | |
masked_embeddings = data * mask | |
sum_embeddings = torch.sum(masked_embeddings, dim=1) | |
token_num = torch.sum(attention_mask).item() | |
return sum_embeddings, token_num | |
def __encode_base64(self, embeddings: torch.Tensor) -> List[str]: | |
embeddings = embeddings.cpu() | |
return [ | |
base64.b64encode(e.numpy().tobytes()).decode("utf-8") for e in embeddings | |
] | |
def get_embeddings(self, params): | |
self.call_ct += 1 | |
try: | |
tokenizer = self.tokenizer | |
ret = {"embedding": [], "token_num": 0} | |
model_type_dict = { | |
"is_llama": "llama" in str(type(self.model)), | |
"is_t5": "t5" in str(type(self.model)), | |
"is_chatglm": "chatglm" in str(type(self.model)), | |
"is_bert": "bert" in str(type(self.model)), | |
"is_robert": "robert" in str(type(self.model)), | |
} | |
if self.embed_in_truncate: | |
encoding = tokenizer.batch_encode_plus( | |
params["input"], | |
padding=True, | |
truncation="longest_first", | |
return_tensors="pt", | |
max_length=self.context_len, | |
) | |
else: | |
encoding = tokenizer.batch_encode_plus( | |
params["input"], padding=True, return_tensors="pt" | |
) | |
input_ids = encoding["input_ids"].to(self.device) | |
attention_mask = input_ids != tokenizer.pad_token_id | |
base64_encode = params.get("encoding_format", None) | |
if self.embed_in_truncate: | |
embedding, token_num = self.__process_embed_chunk( | |
input_ids, attention_mask, **model_type_dict | |
) | |
if ( | |
not hasattr(self.model, "use_cls_pooling") | |
or not self.model.use_cls_pooling | |
): | |
embedding = embedding / token_num | |
normalized_embeddings = F.normalize(embedding, p=2, dim=1) | |
ret["token_num"] = token_num | |
else: | |
all_embeddings = [] | |
all_token_num = 0 | |
for i in range(0, input_ids.size(1), self.context_len): | |
chunk_input_ids = input_ids[:, i : i + self.context_len] | |
chunk_attention_mask = attention_mask[:, i : i + self.context_len] | |
# add cls token and mask to get cls embedding | |
if ( | |
hasattr(self.model, "use_cls_pooling") | |
and self.model.use_cls_pooling | |
): | |
cls_tokens = ( | |
torch.zeros( | |
(chunk_input_ids.size(0), 1), | |
dtype=chunk_input_ids.dtype, | |
device=chunk_input_ids.device, | |
) | |
+ tokenizer.cls_token_id | |
) | |
chunk_input_ids = torch.cat( | |
[cls_tokens, chunk_input_ids], dim=-1 | |
) | |
mask = torch.ones( | |
(chunk_attention_mask.size(0), 1), | |
dtype=chunk_attention_mask.dtype, | |
device=chunk_attention_mask.device, | |
) | |
chunk_attention_mask = torch.cat( | |
[mask, chunk_attention_mask], dim=-1 | |
) | |
chunk_embeddings, token_num = self.__process_embed_chunk( | |
chunk_input_ids, chunk_attention_mask, **model_type_dict | |
) | |
if ( | |
hasattr(self.model, "use_cls_pooling") | |
and self.model.use_cls_pooling | |
): | |
all_embeddings.append(chunk_embeddings * token_num) | |
else: | |
all_embeddings.append(chunk_embeddings) | |
all_token_num += token_num | |
all_embeddings_tensor = torch.stack(all_embeddings) | |
embedding = torch.sum(all_embeddings_tensor, dim=0) / all_token_num | |
normalized_embeddings = F.normalize(embedding, p=2, dim=1) | |
ret["token_num"] = all_token_num | |
if base64_encode == "base64": | |
out_embeddings = self.__encode_base64(normalized_embeddings) | |
else: | |
out_embeddings = normalized_embeddings.tolist() | |
ret["embedding"] = out_embeddings | |
gc.collect() | |
torch.cuda.empty_cache() | |
if self.device == "xpu": | |
torch.xpu.empty_cache() | |
if self.device == "npu": | |
torch.npu.empty_cache() | |
except torch.cuda.OutOfMemoryError as e: | |
ret = { | |
"text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, | |
} | |
except (ValueError, RuntimeError) as e: | |
ret = { | |
"text": f"{SERVER_ERROR_MSG}\n\n({e})", | |
"error_code": ErrorCode.INTERNAL_ERROR, | |
} | |
return ret | |
def create_model_worker(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="localhost") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") | |
parser.add_argument( | |
"--controller-address", type=str, default="http://localhost:21001" | |
) | |
add_model_args(parser) | |
parser.add_argument( | |
"--model-names", | |
type=lambda s: s.split(","), | |
help="Optional display comma separated names", | |
) | |
parser.add_argument( | |
"--conv-template", type=str, default=None, help="Conversation prompt template." | |
) | |
parser.add_argument("--embed-in-truncate", action="store_true") | |
parser.add_argument( | |
"--limit-worker-concurrency", | |
type=int, | |
default=5, | |
help="Limit the model concurrency to prevent OOM.", | |
) | |
parser.add_argument("--stream-interval", type=int, default=2) | |
parser.add_argument("--no-register", action="store_true") | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=None, | |
help="Overwrite the random seed for each generation.", | |
) | |
parser.add_argument( | |
"--debug", type=bool, default=False, help="Print debugging messages" | |
) | |
parser.add_argument( | |
"--ssl", | |
action="store_true", | |
required=False, | |
default=False, | |
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.", | |
) | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
if args.gpus: | |
if len(args.gpus.split(",")) < args.num_gpus: | |
raise ValueError( | |
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
gptq_config = GptqConfig( | |
ckpt=args.gptq_ckpt or args.model_path, | |
wbits=args.gptq_wbits, | |
groupsize=args.gptq_groupsize, | |
act_order=args.gptq_act_order, | |
) | |
awq_config = AWQConfig( | |
ckpt=args.awq_ckpt or args.model_path, | |
wbits=args.awq_wbits, | |
groupsize=args.awq_groupsize, | |
) | |
if args.enable_exllama: | |
exllama_config = ExllamaConfig( | |
max_seq_len=args.exllama_max_seq_len, | |
gpu_split=args.exllama_gpu_split, | |
cache_8bit=args.exllama_cache_8bit, | |
) | |
else: | |
exllama_config = None | |
if args.enable_xft: | |
xft_config = XftConfig( | |
max_seq_len=args.xft_max_seq_len, | |
data_type=args.xft_dtype, | |
) | |
if args.device != "cpu": | |
print("xFasterTransformer now is only support CPUs. Reset device to CPU") | |
args.device = "cpu" | |
else: | |
xft_config = None | |
worker = ModelWorker( | |
args.controller_address, | |
args.worker_address, | |
worker_id, | |
args.model_path, | |
args.model_names, | |
args.limit_worker_concurrency, | |
revision=args.revision, | |
no_register=args.no_register, | |
device=args.device, | |
num_gpus=args.num_gpus, | |
max_gpu_memory=args.max_gpu_memory, | |
dtype=str_to_torch_dtype(args.dtype), | |
load_8bit=args.load_8bit, | |
cpu_offloading=args.cpu_offloading, | |
gptq_config=gptq_config, | |
awq_config=awq_config, | |
exllama_config=exllama_config, | |
xft_config=xft_config, | |
stream_interval=args.stream_interval, | |
conv_template=args.conv_template, | |
embed_in_truncate=args.embed_in_truncate, | |
seed=args.seed, | |
debug=args.debug, | |
) | |
return args, worker | |
if __name__ == "__main__": | |
args, worker = create_model_worker() | |
if args.ssl: | |
uvicorn.run( | |
app, | |
host=args.host, | |
port=args.port, | |
log_level="info", | |
ssl_keyfile=os.environ["SSL_KEYFILE"], | |
ssl_certfile=os.environ["SSL_CERTFILE"], | |
) | |
else: | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |