File size: 9,125 Bytes
8248c84 334036d 8248c84 b8bd9c0 334036d 4cf69d5 334036d 8248c84 334036d 8248c84 334036d 8248c84 b8bd9c0 8248c84 b8bd9c0 8248c84 334036d 8248c84 334036d 8248c84 334036d 8248c84 334036d 8248c84 334036d 8248c84 334036d 8248c84 334036d 8248c84 334036d 24e893f 334036d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import numpy as np
import random
import io
import duckdb
import gradio as gr
import math
from datetime import datetime
import PIL
import matplotlib.pyplot as plt
from PIL import Image
import pennylane as qml
import base64
from numpy import pi
import numpy as np
from qutip import *
from qutip.qip.operations import *
from qutip.qip.circuit import QubitCircuit, Gate
# Define a device
dev = qml.device('default.qubit', wires=10)
def plot_qutip_circuit():
q = QubitCircuit(2, reverse_states=False)
q.add_gate("CNOT", controls=[0], targets=[1])
# Display the circuit as an image
q.png # Generates and renders the circuit diagram
return q
# Hugging Face and DuckDB function placeholders
def store_in_hf_dataset(data):
# Implement storing data in the Hugging Face dataset
pass
def load_from_hf_dataset():
# Implement loading data from the Hugging Face dataset
return []
# Function to buffer the plot and return as PIL image
def buffer_plot_and_get(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return PIL.Image.open(buf)
# Store image in bytes for DuckDB
def pil_image_to_bytes(image):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
return img_byte_arr.getvalue()
# Function to generate a random Hamiltonian
def generate_random_hamiltonian(num_qubits):
terms = []
for _ in range(random.randint(1, 5)):
coeff = round(random.uniform(-1, 1), 2)
pauli_ops = [random.choice(['I', 'X', 'Y', 'Z']) for _ in range(num_qubits)]
term = f"{coeff} * {' '.join(pauli_ops)}"
terms.append(term)
return " + ".join(terms)
# Function to convert Hamiltonian to QASM code
def hamiltonian_to_qasm(hamiltonian, num_qubits):
qasm_code = f"OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[{num_qubits}];\n"
rotations = {i: 0.0 for i in range(num_qubits)}
terms = hamiltonian.split(" + ")
for term in terms:
coeff, paulis = term.split(" * ")
paulis = paulis.split()
coeff = float(coeff)
for i, pauli in enumerate(paulis):
if pauli == "X":
qasm_code += f"x q[{i}];\n"
elif pauli == "Y":
qasm_code += f"ry(pi/2) q[{i}];\n"
elif pauli == "Z":
rotations[i] += coeff
for i, angle in rotations.items():
if angle != 0:
angle_degrees = round(angle * 180 / math.pi, 2)
qasm_code += f"rz({angle_degrees}) q[{i}];\n"
return qasm_code
# Function for Trotter decomposition
def trotter_decomposition(hamiltonian, order):
terms = hamiltonian.split(" + ")
trotter_steps = []
for term in terms:
coeff, *pauli_ops = term.split(" * ")
coeff = float(coeff)
for _ in range(order):
trotter_steps.append(f"exp({coeff / order}) * ({' * '.join(pauli_ops)})")
for _ in range(order):
trotter_steps.append(f"exp({-coeff / order}) * ({' * '.join(pauli_ops)})")
return " + ".join(trotter_steps)
# Store data in DuckDB
def store_in_duckdb(data, db_file='quantum_hamiltonians.duckdb'):
conn = duckdb.connect(database=db_file)
conn.execute("""CREATE TABLE IF NOT EXISTS hamiltonians (
id INTEGER,
plot BLOB,
hamiltonian VARCHAR,
qasm_code VARCHAR,
trotter_code VARCHAR,
num_qubits INTEGER,
trotter_order INTEGER,
timestamp TIMESTAMP
)""")
conn.executemany("""INSERT INTO hamiltonians (id, plot, hamiltonian, qasm_code, trotter_code, num_qubits, trotter_order, timestamp)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)""", data)
conn.close()
# Load results from DuckDB and encode images to base64
def encode_image_from_blob(blob):
img_buffer = io.BytesIO(blob)
image = Image.open(img_buffer)
img_str = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
return f'<img src="data:image/png;base64,{img_str}" style="max-width:500px;"/>'
def load_from_duckdb(db_file='quantum_hamiltonians.duckdb'):
conn = duckdb.connect(database=db_file)
df = conn.execute("SELECT * FROM hamiltonians").df()
conn.close()
# Convert results to HTML with images
html_content = []
for index, row in df.iterrows():
plot_blob = row['plot']
encoded_img = encode_image_from_blob(plot_blob)
html_content.append(f"""
<table style='width: 100%; border-collapse: collapse; margin: 10px;'>
<tr>
<td style='width: 30%; text-align: center;'>
<h3>Circuit {index + 1}</h3>
{encoded_img} <!-- Display the image -->
</td>
<td style='padding: 10px;'>
<table style='width: 100%; border-collapse: collapse;'>
<tr>
<td><strong>Hamiltonian:</strong></td><td>{row['hamiltonian']}</td>
</tr>
<tr>
<td><strong>QASM Representation:</strong></td><td>{row['qasm_code']}</td>
</tr>
<tr>
<td><strong>Trotter Decomposition:</strong></td><td>{row['trotter_code']}</td>
</tr>
<tr>
<td><strong>Number of Qubits:</strong></td><td>{row['num_qubits']}</td>
</tr>
<tr>
<td><strong>Trotter Order:</strong></td><td>{row['trotter_order']}</td>
</tr>
<tr>
<td><strong>Timestamp:</strong></td><td>{row['timestamp']}</td>
</tr>
</table>
</td>
</tr>
</table>
""")
return "".join(html_content)
# Function to generate Hamiltonians
def generate_hamiltonians(num_hamiltonians, selected_qubits, selected_order, write_to_hf, write_to_duckdb):
results_table = []
timestamp = datetime.now()
for i in range(num_hamiltonians):
num_qubits = random.choice(selected_qubits)
order = selected_order
hamiltonian = generate_random_hamiltonian(num_qubits)
qasm_code = hamiltonian_to_qasm(hamiltonian, num_qubits)
trotter_code = trotter_decomposition(hamiltonian, order)
# Create a dummy plot (replace with actual plot creation logic)
fig, ax = plt.subplots()
ax.plot([0, 1], [0, 1])
circuit_plot_image = buffer_plot_and_get(fig)
circuit_plot_bytes = pil_image_to_bytes(circuit_plot_image)
# Append data to results table
results_table.append((i + 1, circuit_plot_bytes, hamiltonian, qasm_code, trotter_code, num_qubits, order, timestamp))
# Write data to Hugging Face dataset if selected
if write_to_hf:
store_in_hf_dataset(results_table)
# Write data to DuckDB if selected
if write_to_duckdb:
store_in_duckdb(results_table)
# Function to load results from either DuckDB or Hugging Face dataset
def load_results(load_from_hf, load_from_duckdb1):
if load_from_hf:
return load_from_hf_dataset()
if load_from_duckdb1:
return load_from_duckdb()
# Gradio app
with gr.Blocks() as app:
gr.Markdown("# Quantum Hamiltonian Generator")
with gr.Tab("Generate Hamiltonians"):
num_hamiltonians = gr.Dropdown(label="Select number of Hamiltonians to generate", choices=[1, 10, 20, 100], value=20)
qubit_choices = [1, 2, 3, 4, 5, 6]
selected_qubits = gr.CheckboxGroup(label="Select number of qubits", choices=qubit_choices, value=[1])
order_choices = [1, 2, 3, 4, 5]
selected_order = gr.Dropdown(label="Select Trotter order", choices=order_choices, value=1)
# Checkboxes for writing to HF dataset and DuckDB
write_to_hf = gr.Checkbox(label="Write to Hugging Face dataset", value=False)
write_to_duckdb = gr.Checkbox(label="Write to DuckDB", value=True)
generate_button = gr.Button("Generate Hamiltonians")
status = gr.Markdown("Click 'Generate Hamiltonians' to start the process.")
def update_status(num, qubits, order, write_hf, write_duckdb):
generate_hamiltonians(num, qubits, order, write_hf, write_duckdb)
return "Data stored as per selection."
generate_button.click(update_status, inputs=[num_hamiltonians, selected_qubits, selected_order, write_to_hf, write_to_duckdb], outputs=status)
with gr.Tab("View Results"):
load_from_hf = gr.Checkbox(label="Load from Hugging Face dataset", value=False)
load_from_duckdb1 = gr.Checkbox(label="Load from DuckDB", value=True)
load_button = gr.Button("Load Results")
output_display = gr.HTML()
load_button.click(load_results, inputs=[load_from_hf, load_from_duckdb1], outputs=output_display)
app.launch()
|