File size: 24,653 Bytes
5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 a1d1593 5ebbc77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
"""
Quantum Physics Problem Generator
Shlomo Kashani
Description:
------------
This module is part of the QuantumLLMInstruct system, designed to generate and solve quantum physics problems
using advanced Large Language Models (LLMs). It utilizes a multi-stage pipeline for problem generation,
solution generation, and database management.
Core Functionalities:
---------------------
1. **Problem Generation**:
- Generates quantum physics problems in LaTeX format using LLMs.
- Supports domain-specific problem generation across multiple quantum fields.
2. **Solution Generation**:
- Provides step-by-step LaTeX solutions for the generated problems using a second LLM.
3. **Data Management**:
- Stores generated problems and solutions in DuckDB and Parquet files.
- Enables exporting data in Parquet format for scalability and compatibility.
4. **Gradio Interface**:
- A user-friendly interface to interact with the system, including problem generation,
solution generation, and database exploration.
5. **Hugging Face Integration**:
- Supports visualization and interaction with the dataset on the Hugging Face platform.
Main Components:
----------------
- **initialize_duckdb() / initialize_parquet()**: Initializes the database schema.
- **generate_multiple_problems()**: Generates multiple problems for the selected quantum domains.
- **generate_solutions()**: Solves unsolved problems in the database.
- **export_parquet()**: Exports the database to a Parquet file for external use.
Dependencies:
-------------
- Python 3.7+
- Transformers: `transformers`
- DuckDB: `duckdb`
- Gradio: `gradio`
- Pandas: `pandas`
"""
import numpy as np
import random
import io
import duckdb
import math
from datetime import datetime
import PIL
from PIL import Image
import pennylane as qml
import base64
import platform
from math import pi
import pandas as pd
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import tqdm
import duckdb
from tqdm import tqdm
import uuid
import random
import sympy
from datetime import datetime
from Q_llm_prompts import *
# Predefined Qwen models
# Qwen2.5 offers multiple model sizes, including 72B, 32B, 14B, 7B, 3B, 1.5B, 0.5B, etc.
# You can choose the appropriate model based on your needs and GPU memory size
model_options = [
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
"Qwen/Qwen2.5-Coder-3B-Instruct",
"Qwen/Qwen2.5-Coder-7B-Instruct",
"Qwen/Qwen2.5-Math-7B-Instruct",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct"
# "unsloth/Qwen2.5-Math-7B-Instruct",
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
# "nvidia/OpenMath-CodeLlama-7b-Python-hf" tokenizer.chat_template is not set and no template argument was passed!
]
solutions_model_options = model_options
# Load default model and tokenizer
selected_model = model_options[0]
model = AutoModelForCausalLM.from_pretrained(
selected_model,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(selected_model)
solution_model = selected_model
solution_tokenizer =tokenizer
solution_model_instance =model
# Function to reload the model when selection changes
def reload_model(model_name):
global model, tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return f"Model loaded: {model_name}"
# Define a Pennylane device
dev = qml.device('default.qubit', wires=10)
# Detect platform-specific device
def is_mac_os():
return platform.system() == 'Darwin'
device = 'cpu' if is_mac_os() else 'cuda'
RESPONSE_SOLUTION_LLM_SYS_PROMPT = "You are an expert in quantum physics and provide detailed solutions in plain text. All mathematical equations and symbols must strictly be in LaTeX."
RESPONSE_SOLUTION_LLM_USR_PROMPT = """
Provide a complete solution to the following quantum physics problem in plain text format:
{problem}
"""
# Parquet file setup
PARQUET_FILE = 'quantum_problems.parquet'
def initialize_parquet():
"""Initialize Parquet file with the required schema if it doesn't exist."""
if not os.path.exists(PARQUET_FILE):
data = {
"uuid": [],
"timestamp": [],
"problem": [],
"sub_domain": [],
"main_domain": [],
"model_name": [],
"solution": [],
"solution_model_name": []
}
df = pd.DataFrame(data)
df.to_parquet(PARQUET_FILE, index=False)
print("Initialized Parquet file with schema.")
def load_parquet():
"""Load data from the Parquet file."""
if os.path.exists(PARQUET_FILE):
return pd.read_parquet(PARQUET_FILE)
else:
initialize_parquet()
return pd.read_parquet(PARQUET_FILE)
def save_parquet(df):
"""Save DataFrame to Parquet file."""
df.to_parquet(PARQUET_FILE, index=False)
def insert_problem_pqt(uuid, timestamp, problem, main_domain, sub_domain, model_name, solution=None, solution_model_name=None):
"""Insert a new problem into the Parquet file."""
df = load_parquet()
new_row = {
"uuid": uuid,
"timestamp": timestamp,
"problem": problem,
"sub_domain": sub_domain,
"main_domain": main_domain,
"model_name": model_name,
"solution": solution,
"solution_model_name": solution_model_name
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
save_parquet(df)
def update_solution_pqt(uuid, solution, solution_model_name):
"""Update the solution for a given problem UUID."""
df = load_parquet()
df.loc[df["uuid"] == uuid, ["solution", "solution_model_name"]] = solution, solution_model_name
save_parquet(df)
# DuckDB setup
DB_FILE = 'quantum_problems.duckdb'
def initialize_duckdb():
conn = duckdb.connect(database=DB_FILE)
conn.execute("""
CREATE TABLE IF NOT EXISTS problems (
uuid TEXT UNIQUE NOT NULL,
timestamp TEXT,
problem TEXT,
sub_domain TEXT,
main_domain TEXT,
model_name TEXT,
solution TEXT,
solution_model_name TEXT
)
""")
# print ("Created schema")
# df = conn.execute("SELECT * FROM problems").df()
# print (df.count)
conn.close()
# Function to buffer the plot and return as PIL image
def buffer_plot_and_get(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return PIL.Image.open(buf)
# Store image in bytes for DuckDB
def pil_image_to_bytes(image):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='PNG')
return img_byte_arr.getvalue()
# Encode the image in base64 to display in HTML
def encode_image_from_blob(blob):
img_buffer = io.BytesIO(blob)
image = Image.open(img_buffer)
img_str = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
return f'<img src="data:image/png;base64,{img_str}" style="max-width:500px;"/>'
# Function to generate a random Hamiltonian
def generate_random_hamiltonian(num_qubits):
terms = []
for _ in range(random.randint(1, 5)):
coeff = round(random.uniform(-1, 1), 2)
pauli_ops = [random.choice(['I', 'X', 'Y', 'Z']) for _ in range(num_qubits)]
term = f"{coeff} * {' '.join(pauli_ops)}"
terms.append(term)
return " + ".join(terms)
# Function to convert Hamiltonian to QASM code
def hamiltonian_to_qasm(hamiltonian, num_qubits):
qasm_code = f"OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[{num_qubits}];\n"
rotations = {i: 0.0 for i in range(num_qubits)}
terms = hamiltonian.split(" + ")
for term in terms:
coeff, paulis = term.split(" * ")
paulis = paulis.split()
coeff = float(coeff)
for i, pauli in enumerate(paulis):
if pauli == "X":
qasm_code += f"x q[{i}];\n"
elif pauli == "Y":
qasm_code += f"ry(pi/2) q[{i}];\n"
elif pauli == "Z":
rotations[i] += coeff
for i, angle in rotations.items():
if angle != 0:
angle_degrees = round(angle * 180 / math.pi, 2)
qasm_code += f"rz({angle_degrees}) q[{i}];\n"
return qasm_code
# Function to parse QASM code and create Pennylane circuit
def qasm_to_pennylane(qasm_code):
qasm_lines = qasm_code.split("\n")
num_qubits = int(qasm_lines[2].split('[')[1].split(']')[0]) # Extract number of qubits from QASM
@qml.qnode(dev)
def circuit():
for line in qasm_lines:
if "x" in line:
qml.PauliX(int(line.split('q[')[1].split(']')[0]))
elif "rz" in line:
angle = float(line.split('(')[1].split(')')[0])
qml.RZ(angle, int(line.split('q[')[1].split(']')[0]))
elif "ry" in line:
qml.RY(pi / 2, int(line.split('q[')[1].split(']')[0]))
return qml.state()
return circuit
# # Store data in DuckDB
# def store_in_duckdb(data, db_file='quantum_hamiltonians.duckdb'):
# conn = duckdb.connect(database=db_file)
# conn.execute("""CREATE TABLE IF NOT EXISTS hamiltonians (
# id INTEGER,
# plot BLOB,
# hamiltonian VARCHAR,
# qasm_code VARCHAR,
# trotter_code VARCHAR,
# num_qubits INTEGER,
# trotter_order INTEGER,
# timestamp TIMESTAMP
# )""")
# conn.executemany("""INSERT INTO hamiltonians (id, plot, hamiltonian, qasm_code, trotter_code, num_qubits, trotter_order, timestamp)
# VALUES (?, ?, ?, ?, ?, ?, ?, ?)""", data)
# conn.close()
# Function to load results from DuckDB
def load_from_duckdb(db_file='quantum_hamiltonians.duckdb'):
conn = duckdb.connect(database=db_file)
df = conn.execute("SELECT * FROM hamiltonians").df()
conn.close()
# Convert results to HTML with images
html_content = []
for index, row in df.iterrows():
plot_blob = row['plot']
encoded_img = encode_image_from_blob(plot_blob)
html_content.append(f"""
<table style='width: 100%; border-collapse: collapse; margin: 10px;'>
<tr>
<td style='width: 30%; text-align: center;'>
<h3>Circuit {index + 1}</h3>
{encoded_img} <!-- Display the image -->
</td>
<td style='padding: 10px;'>
<table style='width: 100%; border-collapse: collapse;'>
<tr>
<td><strong>Hamiltonian:</strong></td><td>{row['hamiltonian']}</td>
</tr>
<tr>
<td><strong>QASM Representation:</strong></td><td>{row['qasm_code']}</td>
</tr>
<tr>
<td><strong>Trotter Decomposition:</strong></td><td>{row['trotter_code']}</td>
</tr>
<tr>
<td><strong>Number of Qubits:</strong></td><td>{row['num_qubits']}</td>
</tr>
<tr>
<td><strong>Trotter Order:</strong></td><td>{row['trotter_order']}</td>
</tr>
<tr>
<td><strong>Timestamp:</strong></td><td>{row['timestamp']}</td>
</tr>
</table>
</td>
</tr>
</table>
""")
return "".join(html_content)
# Function to generate Hamiltonians
def generate_hamiltonians(num_hamiltonians, selected_qubits, selected_order):
results_table = []
timestamp = str(datetime.now())
for i in range(num_hamiltonians):
num_qubits = random.choice(selected_qubits)
order = selected_order
hamiltonian = generate_random_hamiltonian(num_qubits)
qasm_code = hamiltonian_to_qasm(hamiltonian, num_qubits)
trotter_code = trotter_decomposition(hamiltonian, order)
# Generate Pennylane circuit from QASM code
circuit = qasm_to_pennylane(qasm_code)
# Draw the Pennylane circuit and save as an image
fig, ax = qml.draw_mpl(circuit)()
circuit_plot_image = buffer_plot_and_get(fig)
circuit_plot_bytes = pil_image_to_bytes(circuit_plot_image)
# Append data to results table
results_table.append((i + 1, circuit_plot_bytes, hamiltonian, qasm_code, trotter_code, num_qubits, order, timestamp))
# Function for Trotter decomposition
def trotter_decomposition(hamiltonian, order):
terms = hamiltonian.split(" + ")
trotter_steps = []
for term in terms:
coeff, *pauli_ops = term.split(" * ")
coeff = float(coeff)
for _ in range(order):
trotter_steps.append(f"exp({coeff / order}) * ({' * '.join(pauli_ops)})")
for _ in range(order):
trotter_steps.append(f"exp({-coeff / order}) * ({' * '.join(pauli_ops)})")
return " + ".join(trotter_steps)
# def export_parquet(db_file):
# """Export DuckDB table to a Parquet file using COPY."""
# try:
# conn = duckdb.connect(database=db_file)
# parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet"
# conn.execute(f"COPY problems TO '{parquet_file}' (FORMAT PARQUET);")
# conn.close()
# return f"Data successfully exported to Parquet file: {parquet_file}"
# except Exception as e:
# return f"Error exporting to Parquet: {e}"
def export_parquet(db_file):
"""Export DuckDB table to a Parquet file using COPY."""
try:
conn = duckdb.connect(database=db_file)
parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet"
conn.execute(f"""
COPY (
SELECT
uuid,
CAST(timestamp AS VARCHAR) AS timestamp,
problem,
sub_domain,
main_domain,
model_name,
solution,
solution_model_name
FROM problems
) TO '{parquet_file}' (FORMAT PARQUET);
""")
conn.close()
df = pd.read_parquet(parquet_file)
df['timestamp'] = df['timestamp'].astype(str)
df.to_parquet(parquet_file, index=False)
return f"Data successfully exported to Parquet file: {parquet_file}"
except Exception as e:
return f"Error exporting to Parquet: {e}"
def generate_dynamic_prompt(selected_domains):
if not selected_domains:
raise ValueError("No domains selected. Please select at least one domain.")
# Select a single domain randomly
selected_domain = random.choice(selected_domains)
# Retrieve the description and template
domain_details = quantum_problem_domains[selected_domain]
domain_description = domain_details["description"]
example_output = domain_details["template"]
RESPONSE_INSTRUCTION_LLM_PROMPT = f"""
Generate a single detailed quantum physics problem for an exam in LaTeX format. Do not solve the problem.
Do not include additional explanations or comments outside of LaTeX, and avoid unnecessary LaTeX imports (e.g., \\documentclass{{}}, \\usepackage{{}}, or \\begin{{document}}).
All mathematical equations and symbols must strictly be in LaTeX.
Your response must strictly follow this provided format:
1) {{Problem:}} Clearly define the quantum physics problem here, using mathematical precision and LaTeX formatting. Provide any equations or detailed descriptions necessary for students to understand and solve the problem.
2) {{Domain:}} Provide a concise two-word domain description in CAPS such as "ISING HAMILTONIAN".
Do not solve the problem!. The problem must strictly adhere to one and only one of the following domain types:
{domain_description}
Example Response Output:
{example_output}
"""
return RESPONSE_INSTRUCTION_LLM_PROMPT, selected_domain
# Function to generate a quantum physics problem
def generate_problem(pair_id, model_name, selected_domains):
try:
prompt, selected_domain = generate_dynamic_prompt(selected_domains)
messages = [
{"role": "system", "content": "You are a quantum physics professor and an expert in quantum computing."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=10024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
if "{Problem:}" not in response or "{Domain:}" not in response:
raise ValueError(f"Generated problem does not match the expected format. Response:\n{response}")
problem = response.split("{Problem:}")[1].split("{Domain:}")[0].strip()
sub_domain = response.split("{Domain:}")[1].strip()
# Insert the problem into DuckDB
conn = duckdb.connect(database=DB_FILE)
conn.execute("""
INSERT INTO problems (uuid, timestamp, problem, main_domain, sub_domain, model_name)
VALUES (?, ?, ?, ?, ?, ?)
""", (str(uuid.uuid4()), datetime.now().isoformat(), problem, selected_domain, sub_domain, model_name.split("/")[-1]))
conn.close()
# print(response)
return response, selected_domain
except Exception as e:
print(f"Error generating problem {pair_id}: {e}")
return None, None
def generate_multiple_problems(num_pairs, selected_domains):
if not selected_domains:
return "Please select at least one domain type."
conn = duckdb.connect(database=DB_FILE)
current_count = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0]
conn.close()
# Prepare a descriptive header for TQDM
model_name = selected_model.split("/")[-1]
domain_list = ", ".join(selected_domains[:3]) # Include up to 3 domains for brevity
tqdm_desc = f"Generating Instructions - Model: {model_name} | Total: {num_pairs}"
responses = []
with tqdm(total=num_pairs, desc=tqdm_desc, unit="problem") as pbar:
for i in range(num_pairs):
response, selected_domain = generate_problem(current_count + i + 1, selected_model, selected_domains)
if response:
responses.append(response)
pbar.set_postfix_str(f"Last Domain: {selected_domain}") # Updates progress bar with last domain
pbar.update(1)
return "\n\n".join(responses)
def generate_solutions_pqt(solution_model_name):
df = load_parquet()
unsolved_problems = df[df["solution"].isna()]
if unsolved_problems.empty:
return "No unsolved problems found in the database."
with tqdm(total=len(unsolved_problems), desc="Generating Solutions", unit="solution") as pbar:
for _, row in unsolved_problems.iterrows():
try:
solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=row["problem"])
messages = [
{"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT},
{"role": "user", "content": solution_prompt}
]
text = solution_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device)
generated_ids = solution_model_instance.generate(
**model_inputs,
max_new_tokens=10024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Update solution in Parquet
update_solution_pqt(row["uuid"], solution, solution_model_name.split("/")[-1])
except Exception as e:
print(f"Error generating solution for problem {row['uuid']}: {e}")
pbar.update(1)
return "Solutions generated successfully!"
def generate_solutions(solution_model_name):
conn = duckdb.connect(database=DB_FILE)
problems = conn.execute("SELECT uuid, problem FROM problems WHERE solution IS NULL").fetchall()
if not problems:
return "No unsolved problems found in the database."
# Prepare a descriptive header for TQDM
model_name = solution_model_name.split("/")[-1]
total_problems = len(problems)
tqdm_desc = f"Solution Model: {model_name} | Total Problems: {total_problems}"
with tqdm(total=total_problems, desc=tqdm_desc, unit="solution") as pbar:
for problem_id, problem_text in problems:
try:
solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=problem_text)
messages = [
{"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT},
{"role": "user", "content": solution_prompt}
]
text = solution_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device)
generated_ids = solution_model_instance.generate(
**model_inputs,
max_new_tokens=10024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Update the database with the generated solution
conn.execute("""
UPDATE problems
SET solution = ?, solution_model_name = ?
WHERE uuid = ?
""", (solution, model_name, problem_id))
# Update progress bar with the last processed problem ID
pbar.set_postfix_str(f"Last Problem UUID: {problem_id}")
except Exception as e:
print(f"Error generating solution for problem {problem_id}: {e}")
pbar.update(1)
conn.close()
return "Solutions generated successfully!"
# Load problems from DuckDB
def load_problems_from_duckdb():
"""Load all problems and solutions from the DuckDB database."""
conn = duckdb.connect(database=DB_FILE)
df = conn.execute("SELECT * FROM problems").df()
conn.close()
return df
# Load summary from DuckDB
def load_summary_from_duckdb():
conn = duckdb.connect(database=DB_FILE)
# Total number of problems
total_problems = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0]
# Count of distinct domains
distinct_domains_count = conn.execute("SELECT COUNT(DISTINCT main_domain) FROM problems").fetchone()[0]
# Problems by model
problems_by_model = conn.execute("SELECT model_name, COUNT(*) as count FROM problems GROUP BY model_name").fetchall()
conn.close()
# Build the summary
summary = f"<h3>Total Problems: {total_problems}</h3>"
summary += f"<h4>Distinct Domains: {distinct_domains_count}</h4>"
summary += "<h4>Problems by Model:</h4><ul>"
for model_name, count in problems_by_model:
summary += f"<li>{model_name}: {count}</li>"
summary += "</ul>"
return summary
|