File size: 24,677 Bytes
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615d5ff
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d1593
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d1593
5ebbc77
 
a1d1593
5ebbc77
 
 
 
a1d1593
5ebbc77
 
 
 
a1d1593
 
 
 
 
 
5ebbc77
a1d1593
5ebbc77
a1d1593
5ebbc77
 
a1d1593
5ebbc77
a1d1593
5ebbc77
 
a1d1593
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d1593
 
 
 
 
 
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d1593
5ebbc77
 
 
 
a1d1593
 
 
 
5ebbc77
 
 
 
 
 
a1d1593
5ebbc77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
"""
Quantum Physics Problem Generator
Shlomo Kashani 

Description:
------------
This module is part of the QuantumLLMInstruct system, designed to generate and solve quantum physics problems 
using advanced Large Language Models (LLMs). It utilizes a multi-stage pipeline for problem generation, 
solution generation, and database management.

Core Functionalities:
---------------------
1. **Problem Generation**:
   - Generates quantum physics problems in LaTeX format using LLMs.
   - Supports domain-specific problem generation across multiple quantum fields.

2. **Solution Generation**:
   - Provides step-by-step LaTeX solutions for the generated problems using a second LLM.

3. **Data Management**:
   - Stores generated problems and solutions in DuckDB and Parquet files.
   - Enables exporting data in Parquet format for scalability and compatibility.

4. **Gradio Interface**:
   - A user-friendly interface to interact with the system, including problem generation, 
     solution generation, and database exploration.

5. **Hugging Face Integration**:
   - Supports visualization and interaction with the dataset on the Hugging Face platform.

Main Components:
----------------
- **initialize_duckdb() / initialize_parquet()**: Initializes the database schema.
- **generate_multiple_problems()**: Generates multiple problems for the selected quantum domains.
- **generate_solutions()**: Solves unsolved problems in the database.
- **export_parquet()**: Exports the database to a Parquet file for external use.

Dependencies:
-------------
- Python 3.7+
- Transformers: `transformers`
- DuckDB: `duckdb`
- Gradio: `gradio`
- Pandas: `pandas`
"""

import numpy as np
import random
import io
import duckdb
import math
from datetime import datetime
import PIL
from PIL import Image
import pennylane as qml
import base64
import platform
from math import pi
import pandas as pd 
import os 
from transformers import AutoModelForCausalLM, AutoTokenizer
import tqdm 
import duckdb
from tqdm import tqdm
import uuid
import random
import sympy
from datetime import datetime

from Q_llm_prompts import * 

# Predefined Qwen models
# Qwen2.5 offers multiple model sizes, including 72B, 32B, 14B, 7B, 3B, 1.5B, 0.5B, etc.
# You can choose the appropriate model based on your needs and GPU memory size
model_options = [
    "Qwen/Qwen2.5-Coder-1.5B-Instruct",
    "Qwen/Qwen2.5-Coder-3B-Instruct",
    "Qwen/Qwen2.5-Coder-7B-Instruct",
    "Qwen/Qwen2.5-Math-7B-Instruct",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct"
    # "unsloth/Qwen2.5-Math-7B-Instruct",
    # "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
    # "nvidia/OpenMath-CodeLlama-7b-Python-hf" tokenizer.chat_template is not set and no template argument was passed! 
]

solutions_model_options = model_options

# Load default model and tokenizer
selected_model = model_options[0]
model = AutoModelForCausalLM.from_pretrained(
    selected_model,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(selected_model)
solution_model = selected_model
solution_tokenizer =tokenizer
solution_model_instance =model

# Function to reload the model when selection changes
def reload_model(model_name):
    global model, tokenizer
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    return f"Model loaded: {model_name}"



# Define a Pennylane device
dev = qml.device('default.qubit', wires=10)

# Detect platform-specific device
def is_mac_os():
    return platform.system() == 'Darwin'

device = 'cpu' if is_mac_os() else 'cuda'

RESPONSE_SOLUTION_LLM_SYS_PROMPT = "You are an expert in quantum physics and provide detailed solutions in plain text. All mathematical equations and symbols must strictly be in LaTeX."
RESPONSE_SOLUTION_LLM_USR_PROMPT = """
Provide a complete solution to the following quantum physics problem in plain text format:
{problem}
"""

# Parquet file setup
PARQUET_FILE = 'quantum_problems.parquet'

def initialize_parquet():
    """Initialize Parquet file with the required schema if it doesn't exist."""
    if not os.path.exists(PARQUET_FILE):
        data = {
            "uuid": [],
            "timestamp": [],
            "problem": [],
            "sub_domain": [],
            "main_domain": [],
            "model_name": [],
            "solution": [],
            "solution_model_name": []
        }
        df = pd.DataFrame(data)
        df.to_parquet(PARQUET_FILE, index=False)
        print("Initialized Parquet file with schema.")

def load_parquet():
    """Load data from the Parquet file."""
    if os.path.exists(PARQUET_FILE):
        return pd.read_parquet(PARQUET_FILE)
    else:
        initialize_parquet()
        return pd.read_parquet(PARQUET_FILE)

def save_parquet(df):
    """Save DataFrame to Parquet file."""
    df.to_parquet(PARQUET_FILE, index=False)

def insert_problem_pqt(uuid, timestamp, problem, main_domain, sub_domain, model_name, solution=None, solution_model_name=None):
    """Insert a new problem into the Parquet file."""
    df = load_parquet()
    new_row = {
        "uuid": uuid,
        "timestamp": timestamp,
        "problem": problem,
        "sub_domain": sub_domain,
        "main_domain": main_domain,
        "model_name": model_name,
        "solution": solution,
        "solution_model_name": solution_model_name
    }
    df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
    save_parquet(df)

def update_solution_pqt(uuid, solution, solution_model_name):
    """Update the solution for a given problem UUID."""
    df = load_parquet()
    df.loc[df["uuid"] == uuid, ["solution", "solution_model_name"]] = solution, solution_model_name
    save_parquet(df)


# DuckDB setup
DB_FILE = 'quantum_problems.duckdb' # persistant path on HF

def initialize_duckdb():
    conn = duckdb.connect(database=DB_FILE)

    conn.execute("""
        CREATE TABLE IF NOT EXISTS problems (
           uuid TEXT UNIQUE NOT NULL,
            timestamp TEXT,
            problem TEXT,
            sub_domain TEXT,
            main_domain TEXT,
            model_name TEXT,
            solution TEXT,
            solution_model_name TEXT
        )
    """)
    # print ("Created schema")
    # df = conn.execute("SELECT * FROM problems").df()
    # print (df.count)
    conn.close()

# Function to buffer the plot and return as PIL image
def buffer_plot_and_get(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return PIL.Image.open(buf)

# Store image in bytes for DuckDB
def pil_image_to_bytes(image):
    img_byte_arr = io.BytesIO()
    image.save(img_byte_arr, format='PNG')
    return img_byte_arr.getvalue()

# Encode the image in base64 to display in HTML
def encode_image_from_blob(blob):
    img_buffer = io.BytesIO(blob)
    image = Image.open(img_buffer)
    img_str = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
    return f'<img src="data:image/png;base64,{img_str}" style="max-width:500px;"/>'

# Function to generate a random Hamiltonian
def generate_random_hamiltonian(num_qubits):
    terms = []
    for _ in range(random.randint(1, 5)):
        coeff = round(random.uniform(-1, 1), 2)
        pauli_ops = [random.choice(['I', 'X', 'Y', 'Z']) for _ in range(num_qubits)]
        term = f"{coeff} * {' '.join(pauli_ops)}"
        terms.append(term)
    return " + ".join(terms)

# Function to convert Hamiltonian to QASM code
def hamiltonian_to_qasm(hamiltonian, num_qubits):
    qasm_code = f"OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[{num_qubits}];\n"
    rotations = {i: 0.0 for i in range(num_qubits)}
    terms = hamiltonian.split(" + ")
    
    for term in terms:
        coeff, paulis = term.split(" * ")
        paulis = paulis.split()
        coeff = float(coeff)

        for i, pauli in enumerate(paulis):
            if pauli == "X":
                qasm_code += f"x q[{i}];\n"
            elif pauli == "Y":
                qasm_code += f"ry(pi/2) q[{i}];\n"
            elif pauli == "Z":
                rotations[i] += coeff

    for i, angle in rotations.items():
        if angle != 0:
            angle_degrees = round(angle * 180 / math.pi, 2)
            qasm_code += f"rz({angle_degrees}) q[{i}];\n"
    
    return qasm_code

# Function to parse QASM code and create Pennylane circuit
def qasm_to_pennylane(qasm_code):
    qasm_lines = qasm_code.split("\n")
    num_qubits = int(qasm_lines[2].split('[')[1].split(']')[0])  # Extract number of qubits from QASM
    
    @qml.qnode(dev)
    def circuit():
        for line in qasm_lines:
            if "x" in line:
                qml.PauliX(int(line.split('q[')[1].split(']')[0]))
            elif "rz" in line:
                angle = float(line.split('(')[1].split(')')[0])
                qml.RZ(angle, int(line.split('q[')[1].split(']')[0]))
            elif "ry" in line:
                qml.RY(pi / 2, int(line.split('q[')[1].split(']')[0]))
        return qml.state()
    
    return circuit

# # Store data in DuckDB
# def store_in_duckdb(data, db_file='quantum_hamiltonians.duckdb'):
#     conn = duckdb.connect(database=db_file)
#     conn.execute("""CREATE TABLE IF NOT EXISTS hamiltonians (
#         id INTEGER,
#         plot BLOB,
#         hamiltonian VARCHAR,
#         qasm_code VARCHAR,
#         trotter_code VARCHAR,
#         num_qubits INTEGER,
#         trotter_order INTEGER,
#         timestamp TIMESTAMP
#     )""")
#     conn.executemany("""INSERT INTO hamiltonians (id, plot, hamiltonian, qasm_code, trotter_code, num_qubits, trotter_order, timestamp)
#                         VALUES (?, ?, ?, ?, ?, ?, ?, ?)""", data)
#     conn.close()

# Function to load results from DuckDB
def load_from_duckdb(db_file='quantum_hamiltonians.duckdb'):
    conn = duckdb.connect(database=db_file)
    df = conn.execute("SELECT * FROM hamiltonians").df()
    conn.close()

    # Convert results to HTML with images
    html_content = []
    for index, row in df.iterrows():
        plot_blob = row['plot']
        encoded_img = encode_image_from_blob(plot_blob)

        html_content.append(f"""
            <table style='width: 100%; border-collapse: collapse; margin: 10px;'>
                <tr>
                    <td style='width: 30%; text-align: center;'>
                        <h3>Circuit {index + 1}</h3>
                        {encoded_img}  <!-- Display the image -->
                    </td>        
                    <td style='padding: 10px;'>
                        <table style='width: 100%; border-collapse: collapse;'>
                            <tr>
                                <td><strong>Hamiltonian:</strong></td><td>{row['hamiltonian']}</td>
                            </tr>
                            <tr>
                                <td><strong>QASM Representation:</strong></td><td>{row['qasm_code']}</td>
                            </tr>
                            <tr>
                                <td><strong>Trotter Decomposition:</strong></td><td>{row['trotter_code']}</td>
                            </tr>
                            <tr>
                                <td><strong>Number of Qubits:</strong></td><td>{row['num_qubits']}</td>
                            </tr>
                            <tr>
                                <td><strong>Trotter Order:</strong></td><td>{row['trotter_order']}</td>
                            </tr>
                            <tr>
                                <td><strong>Timestamp:</strong></td><td>{row['timestamp']}</td>
                            </tr>
                        </table>
                    </td>
                </tr>
            </table>
        """)

    return "".join(html_content)

# Function to generate Hamiltonians
def generate_hamiltonians(num_hamiltonians, selected_qubits, selected_order):
    results_table = []
    timestamp = str(datetime.now())

    for i in range(num_hamiltonians):
        num_qubits = random.choice(selected_qubits)
        order = selected_order
        hamiltonian = generate_random_hamiltonian(num_qubits)
        qasm_code = hamiltonian_to_qasm(hamiltonian, num_qubits)
        trotter_code = trotter_decomposition(hamiltonian, order)

        # Generate Pennylane circuit from QASM code
        circuit = qasm_to_pennylane(qasm_code)

        # Draw the Pennylane circuit and save as an image
        fig, ax = qml.draw_mpl(circuit)()
        circuit_plot_image = buffer_plot_and_get(fig)
        circuit_plot_bytes = pil_image_to_bytes(circuit_plot_image)

        # Append data to results table
        results_table.append((i + 1, circuit_plot_bytes, hamiltonian, qasm_code, trotter_code, num_qubits, order, timestamp))


# Function for Trotter decomposition
def trotter_decomposition(hamiltonian, order):
    terms = hamiltonian.split(" + ")
    trotter_steps = []
    
    for term in terms:
        coeff, *pauli_ops = term.split(" * ")
        coeff = float(coeff)
        for _ in range(order):
            trotter_steps.append(f"exp({coeff / order}) * ({' * '.join(pauli_ops)})")
        for _ in range(order):
            trotter_steps.append(f"exp({-coeff / order}) * ({' * '.join(pauli_ops)})")
    
    return " + ".join(trotter_steps)

# def export_parquet(db_file):
#     """Export DuckDB table to a Parquet file using COPY."""
#     try:
#         conn = duckdb.connect(database=db_file)
#         parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet"
#         conn.execute(f"COPY problems TO '{parquet_file}' (FORMAT PARQUET);")
#         conn.close()
#         return f"Data successfully exported to Parquet file: {parquet_file}"
#     except Exception as e:
#         return f"Error exporting to Parquet: {e}"

def export_parquet(db_file):
    """Export DuckDB table to a Parquet file using COPY."""
    try:
        conn = duckdb.connect(database=db_file)
        parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet"
        conn.execute(f"""
            COPY (
                SELECT 
                    uuid,
                    CAST(timestamp AS VARCHAR) AS timestamp, 
                    problem, 
                    sub_domain, 
                    main_domain, 
                    model_name, 
                    solution, 
                    solution_model_name
                FROM problems
            ) TO '{parquet_file}' (FORMAT PARQUET);
        """)
        conn.close()
        df = pd.read_parquet(parquet_file)
        df['timestamp'] = df['timestamp'].astype(str)                
        df.to_parquet(parquet_file, index=False)

        return f"Data successfully exported to Parquet file: {parquet_file}"
    except Exception as e:
        return f"Error exporting to Parquet: {e}"

def generate_dynamic_prompt(selected_domains):
    if not selected_domains:
        raise ValueError("No domains selected. Please select at least one domain.")
    # Select a single domain randomly
    selected_domain = random.choice(selected_domains)
    
    # Retrieve the description and template
    domain_details = quantum_problem_domains[selected_domain]
    domain_description = domain_details["description"]
    example_output = domain_details["template"]
    RESPONSE_INSTRUCTION_LLM_PROMPT = f"""
            Generate a single detailed quantum physics problem for an exam in LaTeX format. Do not solve the problem. 
            Do not include additional explanations or comments outside of LaTeX, and avoid unnecessary LaTeX imports (e.g., \\documentclass{{}}, \\usepackage{{}}, or \\begin{{document}}). 
            All mathematical equations and symbols must strictly be in LaTeX. 
            Your response must strictly follow this provided format:
            1) {{Problem:}} Clearly define the quantum physics problem here, using mathematical precision and LaTeX formatting. Provide any equations or detailed descriptions necessary for students to understand and solve the problem.
            2) {{Domain:}} Provide a concise two-word domain description in CAPS such as "ISING HAMILTONIAN".
            Do not solve the problem!. The problem must strictly adhere to one and only one of the following domain types:
            {domain_description}
            Example Response Output:
            {example_output}
            """
    return RESPONSE_INSTRUCTION_LLM_PROMPT, selected_domain

# Function to generate a quantum physics problem
def generate_problem(pair_id, model_name, selected_domains):
    try:
        prompt, selected_domain = generate_dynamic_prompt(selected_domains)
    
        messages = [
            {"role": "system", "content": "You are a quantum physics professor and an expert in quantum computing."},
            {"role": "user", "content": prompt}
        ]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

        generated_ids = model.generate(
            **model_inputs,
            max_new_tokens=10024
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

        if "{Problem:}" not in response or "{Domain:}" not in response:
            raise ValueError(f"Generated problem does not match the expected format. Response:\n{response}")

        problem = response.split("{Problem:}")[1].split("{Domain:}")[0].strip()
        sub_domain = response.split("{Domain:}")[1].strip()      

        # Insert the problem into DuckDB
        conn = duckdb.connect(database=DB_FILE)
        conn.execute("""
            INSERT INTO problems (uuid, timestamp, problem, main_domain, sub_domain, model_name)
            VALUES (?, ?, ?, ?, ?, ?)
        """, (str(uuid.uuid4()), datetime.now().isoformat(), problem, selected_domain, sub_domain, model_name.split("/")[-1]))
        conn.close()
        
        # print(response)
        return response, selected_domain
    except Exception as e:
        print(f"Error generating problem {pair_id}: {e}")
        return None, None

def generate_multiple_problems(num_pairs, selected_domains):
    if not selected_domains:
        return "Please select at least one domain type."
    
    conn = duckdb.connect(database=DB_FILE)
    current_count = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0]
    conn.close()

    # Prepare a descriptive header for TQDM
    model_name = selected_model.split("/")[-1]
    domain_list = ", ".join(selected_domains[:3])  # Include up to 3 domains for brevity
    
    tqdm_desc = f"Generating Instructions - Model: {model_name} | Total: {num_pairs}"
    
    responses = []
    with tqdm(total=num_pairs, desc=tqdm_desc, unit="problem") as pbar:
        for i in range(num_pairs):
            response, selected_domain = generate_problem(current_count + i + 1, selected_model, selected_domains)
            if response:
                responses.append(response)
            pbar.set_postfix_str(f"Last Domain: {selected_domain}")  # Updates progress bar with last domain
            pbar.update(1)
            
    return "\n\n".join(responses)


def generate_solutions_pqt(solution_model_name):
    df = load_parquet()
    unsolved_problems = df[df["solution"].isna()]

    if unsolved_problems.empty:
        return "No unsolved problems found in the database."

    with tqdm(total=len(unsolved_problems), desc="Generating Solutions", unit="solution") as pbar:
        for _, row in unsolved_problems.iterrows():
            try:
                solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=row["problem"])
                
                messages = [
                    {"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT},
                    {"role": "user", "content": solution_prompt}
                ]
                text = solution_tokenizer.apply_chat_template(
                    messages,
                    tokenize=False,
                    add_generation_prompt=True
                )
                model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device)

                generated_ids = solution_model_instance.generate(
                    **model_inputs,
                    max_new_tokens=10024
                )
                generated_ids = [
                    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
                ]
                solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

                # Update solution in Parquet
                update_solution_pqt(row["uuid"], solution, solution_model_name.split("/")[-1])
            except Exception as e:
                print(f"Error generating solution for problem {row['uuid']}: {e}")
            pbar.update(1)
    return "Solutions generated successfully!"

def generate_solutions(solution_model_name):
    conn = duckdb.connect(database=DB_FILE)
    problems = conn.execute("SELECT uuid, problem FROM problems WHERE solution IS NULL").fetchall()

    if not problems:
        return "No unsolved problems found in the database."

    # Prepare a descriptive header for TQDM
    model_name = solution_model_name.split("/")[-1]
    total_problems = len(problems)
    tqdm_desc = f"Solution Model: {model_name} | Total Problems: {total_problems}"

    with tqdm(total=total_problems, desc=tqdm_desc, unit="solution") as pbar:
        for problem_id, problem_text in problems:
            try:
                solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=problem_text)
                
                messages = [
                    {"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT},
                    {"role": "user", "content": solution_prompt}
                ]
                text = solution_tokenizer.apply_chat_template(
                    messages,
                    tokenize=False,
                    add_generation_prompt=True
                )
                model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device)

                generated_ids = solution_model_instance.generate(
                    **model_inputs,
                    max_new_tokens=10024
                )
                generated_ids = [
                    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
                ]
                solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

                # Update the database with the generated solution
                conn.execute("""
                    UPDATE problems
                    SET solution = ?, solution_model_name = ?
                    WHERE uuid = ?
                """, (solution, model_name, problem_id))
                
                # Update progress bar with the last processed problem ID
                pbar.set_postfix_str(f"Last Problem UUID: {problem_id}")
            except Exception as e:
                print(f"Error generating solution for problem {problem_id}: {e}")
            pbar.update(1)
    conn.close()
    return "Solutions generated successfully!"


# Load problems from DuckDB
def load_problems_from_duckdb():
    """Load all problems and solutions from the DuckDB database."""
    conn = duckdb.connect(database=DB_FILE)
    df = conn.execute("SELECT * FROM problems").df()
    conn.close()
    return df

# Load summary from DuckDB
def load_summary_from_duckdb():
    conn = duckdb.connect(database=DB_FILE)

    # Total number of problems
    total_problems = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0]

    # Count of distinct domains
    distinct_domains_count = conn.execute("SELECT COUNT(DISTINCT main_domain) FROM problems").fetchone()[0]

    # Problems by model
    problems_by_model = conn.execute("SELECT model_name, COUNT(*) as count FROM problems GROUP BY model_name").fetchall()
    conn.close()

    # Build the summary
    summary = f"<h3>Total Problems: {total_problems}</h3>"
    summary += f"<h4>Distinct Domains: {distinct_domains_count}</h4>"

    summary += "<h4>Problems by Model:</h4><ul>"
    for model_name, count in problems_by_model:
        summary += f"<li>{model_name}: {count}</li>"
    summary += "</ul>"

    return summary