""" Quantum Physics Problem Generator Shlomo Kashani Description: ------------ This module is part of the QuantumLLMInstruct system, designed to generate and solve quantum physics problems using advanced Large Language Models (LLMs). It utilizes a multi-stage pipeline for problem generation, solution generation, and database management. Core Functionalities: --------------------- 1. **Problem Generation**: - Generates quantum physics problems in LaTeX format using LLMs. - Supports domain-specific problem generation across multiple quantum fields. 2. **Solution Generation**: - Provides step-by-step LaTeX solutions for the generated problems using a second LLM. 3. **Data Management**: - Stores generated problems and solutions in DuckDB and Parquet files. - Enables exporting data in Parquet format for scalability and compatibility. 4. **Gradio Interface**: - A user-friendly interface to interact with the system, including problem generation, solution generation, and database exploration. 5. **Hugging Face Integration**: - Supports visualization and interaction with the dataset on the Hugging Face platform. Main Components: ---------------- - **initialize_duckdb() / initialize_parquet()**: Initializes the database schema. - **generate_multiple_problems()**: Generates multiple problems for the selected quantum domains. - **generate_solutions()**: Solves unsolved problems in the database. - **export_parquet()**: Exports the database to a Parquet file for external use. Dependencies: ------------- - Python 3.7+ - Transformers: `transformers` - DuckDB: `duckdb` - Gradio: `gradio` - Pandas: `pandas` """ import numpy as np import random import io import duckdb import math from datetime import datetime import PIL from PIL import Image import pennylane as qml import base64 import platform from math import pi import pandas as pd import os from transformers import AutoModelForCausalLM, AutoTokenizer import tqdm import duckdb from tqdm import tqdm import uuid import random import sympy from datetime import datetime from Q_llm_prompts import * # Predefined Qwen models # Qwen2.5 offers multiple model sizes, including 72B, 32B, 14B, 7B, 3B, 1.5B, 0.5B, etc. # You can choose the appropriate model based on your needs and GPU memory size model_options = [ "Qwen/Qwen2.5-Coder-1.5B-Instruct", "Qwen/Qwen2.5-Coder-3B-Instruct", "Qwen/Qwen2.5-Coder-7B-Instruct", "Qwen/Qwen2.5-Math-7B-Instruct", "Qwen/Qwen2.5-Coder-32B-Instruct", "meta-llama/Llama-3.2-3B-Instruct" # "unsloth/Qwen2.5-Math-7B-Instruct", # "unsloth/Llama-3.2-3B-Instruct-bnb-4bit", # "nvidia/OpenMath-CodeLlama-7b-Python-hf" tokenizer.chat_template is not set and no template argument was passed! ] solutions_model_options = model_options # Load default model and tokenizer selected_model = model_options[0] model = AutoModelForCausalLM.from_pretrained( selected_model, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(selected_model) solution_model = selected_model solution_tokenizer =tokenizer solution_model_instance =model # Function to reload the model when selection changes def reload_model(model_name): global model, tokenizer model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) return f"Model loaded: {model_name}" # Define a Pennylane device dev = qml.device('default.qubit', wires=10) # Detect platform-specific device def is_mac_os(): return platform.system() == 'Darwin' device = 'cpu' if is_mac_os() else 'cuda' RESPONSE_SOLUTION_LLM_SYS_PROMPT = "You are an expert in quantum physics and provide detailed solutions in plain text. All mathematical equations and symbols must strictly be in LaTeX." RESPONSE_SOLUTION_LLM_USR_PROMPT = """ Provide a complete solution to the following quantum physics problem in plain text format: {problem} """ # Parquet file setup PARQUET_FILE = 'quantum_problems.parquet' def initialize_parquet(): """Initialize Parquet file with the required schema if it doesn't exist.""" if not os.path.exists(PARQUET_FILE): data = { "uuid": [], "timestamp": [], "problem": [], "sub_domain": [], "main_domain": [], "model_name": [], "solution": [], "solution_model_name": [] } df = pd.DataFrame(data) df.to_parquet(PARQUET_FILE, index=False) print("Initialized Parquet file with schema.") def load_parquet(): """Load data from the Parquet file.""" if os.path.exists(PARQUET_FILE): return pd.read_parquet(PARQUET_FILE) else: initialize_parquet() return pd.read_parquet(PARQUET_FILE) def save_parquet(df): """Save DataFrame to Parquet file.""" df.to_parquet(PARQUET_FILE, index=False) def insert_problem_pqt(uuid, timestamp, problem, main_domain, sub_domain, model_name, solution=None, solution_model_name=None): """Insert a new problem into the Parquet file.""" df = load_parquet() new_row = { "uuid": uuid, "timestamp": timestamp, "problem": problem, "sub_domain": sub_domain, "main_domain": main_domain, "model_name": model_name, "solution": solution, "solution_model_name": solution_model_name } df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True) save_parquet(df) def update_solution_pqt(uuid, solution, solution_model_name): """Update the solution for a given problem UUID.""" df = load_parquet() df.loc[df["uuid"] == uuid, ["solution", "solution_model_name"]] = solution, solution_model_name save_parquet(df) # DuckDB setup DB_FILE = 'quantum_problems.duckdb' def initialize_duckdb(): conn = duckdb.connect(database=DB_FILE) conn.execute(""" CREATE TABLE IF NOT EXISTS problems ( uuid TEXT UNIQUE NOT NULL, timestamp TEXT, problem TEXT, sub_domain TEXT, main_domain TEXT, model_name TEXT, solution TEXT, solution_model_name TEXT ) """) # print ("Created schema") # df = conn.execute("SELECT * FROM problems").df() # print (df.count) conn.close() # Function to buffer the plot and return as PIL image def buffer_plot_and_get(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) return PIL.Image.open(buf) # Store image in bytes for DuckDB def pil_image_to_bytes(image): img_byte_arr = io.BytesIO() image.save(img_byte_arr, format='PNG') return img_byte_arr.getvalue() # Encode the image in base64 to display in HTML def encode_image_from_blob(blob): img_buffer = io.BytesIO(blob) image = Image.open(img_buffer) img_str = base64.b64encode(img_buffer.getvalue()).decode("utf-8") return f'' # Function to generate a random Hamiltonian def generate_random_hamiltonian(num_qubits): terms = [] for _ in range(random.randint(1, 5)): coeff = round(random.uniform(-1, 1), 2) pauli_ops = [random.choice(['I', 'X', 'Y', 'Z']) for _ in range(num_qubits)] term = f"{coeff} * {' '.join(pauli_ops)}" terms.append(term) return " + ".join(terms) # Function to convert Hamiltonian to QASM code def hamiltonian_to_qasm(hamiltonian, num_qubits): qasm_code = f"OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[{num_qubits}];\n" rotations = {i: 0.0 for i in range(num_qubits)} terms = hamiltonian.split(" + ") for term in terms: coeff, paulis = term.split(" * ") paulis = paulis.split() coeff = float(coeff) for i, pauli in enumerate(paulis): if pauli == "X": qasm_code += f"x q[{i}];\n" elif pauli == "Y": qasm_code += f"ry(pi/2) q[{i}];\n" elif pauli == "Z": rotations[i] += coeff for i, angle in rotations.items(): if angle != 0: angle_degrees = round(angle * 180 / math.pi, 2) qasm_code += f"rz({angle_degrees}) q[{i}];\n" return qasm_code # Function to parse QASM code and create Pennylane circuit def qasm_to_pennylane(qasm_code): qasm_lines = qasm_code.split("\n") num_qubits = int(qasm_lines[2].split('[')[1].split(']')[0]) # Extract number of qubits from QASM @qml.qnode(dev) def circuit(): for line in qasm_lines: if "x" in line: qml.PauliX(int(line.split('q[')[1].split(']')[0])) elif "rz" in line: angle = float(line.split('(')[1].split(')')[0]) qml.RZ(angle, int(line.split('q[')[1].split(']')[0])) elif "ry" in line: qml.RY(pi / 2, int(line.split('q[')[1].split(']')[0])) return qml.state() return circuit # # Store data in DuckDB # def store_in_duckdb(data, db_file='quantum_hamiltonians.duckdb'): # conn = duckdb.connect(database=db_file) # conn.execute("""CREATE TABLE IF NOT EXISTS hamiltonians ( # id INTEGER, # plot BLOB, # hamiltonian VARCHAR, # qasm_code VARCHAR, # trotter_code VARCHAR, # num_qubits INTEGER, # trotter_order INTEGER, # timestamp TIMESTAMP # )""") # conn.executemany("""INSERT INTO hamiltonians (id, plot, hamiltonian, qasm_code, trotter_code, num_qubits, trotter_order, timestamp) # VALUES (?, ?, ?, ?, ?, ?, ?, ?)""", data) # conn.close() # Function to load results from DuckDB def load_from_duckdb(db_file='quantum_hamiltonians.duckdb'): conn = duckdb.connect(database=db_file) df = conn.execute("SELECT * FROM hamiltonians").df() conn.close() # Convert results to HTML with images html_content = [] for index, row in df.iterrows(): plot_blob = row['plot'] encoded_img = encode_image_from_blob(plot_blob) html_content.append(f"""

Circuit {index + 1}

{encoded_img}
Hamiltonian:{row['hamiltonian']}
QASM Representation:{row['qasm_code']}
Trotter Decomposition:{row['trotter_code']}
Number of Qubits:{row['num_qubits']}
Trotter Order:{row['trotter_order']}
Timestamp:{row['timestamp']}
""") return "".join(html_content) # Function to generate Hamiltonians def generate_hamiltonians(num_hamiltonians, selected_qubits, selected_order): results_table = [] timestamp = str(datetime.now()) for i in range(num_hamiltonians): num_qubits = random.choice(selected_qubits) order = selected_order hamiltonian = generate_random_hamiltonian(num_qubits) qasm_code = hamiltonian_to_qasm(hamiltonian, num_qubits) trotter_code = trotter_decomposition(hamiltonian, order) # Generate Pennylane circuit from QASM code circuit = qasm_to_pennylane(qasm_code) # Draw the Pennylane circuit and save as an image fig, ax = qml.draw_mpl(circuit)() circuit_plot_image = buffer_plot_and_get(fig) circuit_plot_bytes = pil_image_to_bytes(circuit_plot_image) # Append data to results table results_table.append((i + 1, circuit_plot_bytes, hamiltonian, qasm_code, trotter_code, num_qubits, order, timestamp)) # Function for Trotter decomposition def trotter_decomposition(hamiltonian, order): terms = hamiltonian.split(" + ") trotter_steps = [] for term in terms: coeff, *pauli_ops = term.split(" * ") coeff = float(coeff) for _ in range(order): trotter_steps.append(f"exp({coeff / order}) * ({' * '.join(pauli_ops)})") for _ in range(order): trotter_steps.append(f"exp({-coeff / order}) * ({' * '.join(pauli_ops)})") return " + ".join(trotter_steps) # def export_parquet(db_file): # """Export DuckDB table to a Parquet file using COPY.""" # try: # conn = duckdb.connect(database=db_file) # parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet" # conn.execute(f"COPY problems TO '{parquet_file}' (FORMAT PARQUET);") # conn.close() # return f"Data successfully exported to Parquet file: {parquet_file}" # except Exception as e: # return f"Error exporting to Parquet: {e}" def export_parquet(db_file): """Export DuckDB table to a Parquet file using COPY.""" try: conn = duckdb.connect(database=db_file) parquet_file = f"quantum_problems_{datetime.now().strftime('%Y%m%d_%H%M%S')}.parquet" conn.execute(f""" COPY ( SELECT uuid, CAST(timestamp AS VARCHAR) AS timestamp, problem, sub_domain, main_domain, model_name, solution, solution_model_name FROM problems ) TO '{parquet_file}' (FORMAT PARQUET); """) conn.close() df = pd.read_parquet(parquet_file) df['timestamp'] = df['timestamp'].astype(str) df.to_parquet(parquet_file, index=False) return f"Data successfully exported to Parquet file: {parquet_file}" except Exception as e: return f"Error exporting to Parquet: {e}" def generate_dynamic_prompt(selected_domains): if not selected_domains: raise ValueError("No domains selected. Please select at least one domain.") # Select a single domain randomly selected_domain = random.choice(selected_domains) # Retrieve the description and template domain_details = quantum_problem_domains[selected_domain] domain_description = domain_details["description"] example_output = domain_details["template"] RESPONSE_INSTRUCTION_LLM_PROMPT = f""" Generate a single detailed quantum physics problem for an exam in LaTeX format. Do not solve the problem. Do not include additional explanations or comments outside of LaTeX, and avoid unnecessary LaTeX imports (e.g., \\documentclass{{}}, \\usepackage{{}}, or \\begin{{document}}). All mathematical equations and symbols must strictly be in LaTeX. Your response must strictly follow this provided format: 1) {{Problem:}} Clearly define the quantum physics problem here, using mathematical precision and LaTeX formatting. Provide any equations or detailed descriptions necessary for students to understand and solve the problem. 2) {{Domain:}} Provide a concise two-word domain description in CAPS such as "ISING HAMILTONIAN". Do not solve the problem!. The problem must strictly adhere to one and only one of the following domain types: {domain_description} Example Response Output: {example_output} """ return RESPONSE_INSTRUCTION_LLM_PROMPT, selected_domain # Function to generate a quantum physics problem def generate_problem(pair_id, model_name, selected_domains): try: prompt, selected_domain = generate_dynamic_prompt(selected_domains) messages = [ {"role": "system", "content": "You are a quantum physics professor and an expert in quantum computing."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=10024 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] if "{Problem:}" not in response or "{Domain:}" not in response: raise ValueError(f"Generated problem does not match the expected format. Response:\n{response}") problem = response.split("{Problem:}")[1].split("{Domain:}")[0].strip() sub_domain = response.split("{Domain:}")[1].strip() # Insert the problem into DuckDB conn = duckdb.connect(database=DB_FILE) conn.execute(""" INSERT INTO problems (uuid, timestamp, problem, main_domain, sub_domain, model_name) VALUES (?, ?, ?, ?, ?, ?) """, (str(uuid.uuid4()), datetime.now().isoformat(), problem, selected_domain, sub_domain, model_name.split("/")[-1])) conn.close() # print(response) return response, selected_domain except Exception as e: print(f"Error generating problem {pair_id}: {e}") return None, None def generate_multiple_problems(num_pairs, selected_domains): if not selected_domains: return "Please select at least one domain type." conn = duckdb.connect(database=DB_FILE) current_count = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0] conn.close() # Prepare a descriptive header for TQDM model_name = selected_model.split("/")[-1] domain_list = ", ".join(selected_domains[:3]) # Include up to 3 domains for brevity tqdm_desc = f"Generating Instructions - Model: {model_name} | Total: {num_pairs}" responses = [] with tqdm(total=num_pairs, desc=tqdm_desc, unit="problem") as pbar: for i in range(num_pairs): response, selected_domain = generate_problem(current_count + i + 1, selected_model, selected_domains) if response: responses.append(response) pbar.set_postfix_str(f"Last Domain: {selected_domain}") # Updates progress bar with last domain pbar.update(1) return "\n\n".join(responses) def generate_solutions_pqt(solution_model_name): df = load_parquet() unsolved_problems = df[df["solution"].isna()] if unsolved_problems.empty: return "No unsolved problems found in the database." with tqdm(total=len(unsolved_problems), desc="Generating Solutions", unit="solution") as pbar: for _, row in unsolved_problems.iterrows(): try: solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=row["problem"]) messages = [ {"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT}, {"role": "user", "content": solution_prompt} ] text = solution_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device) generated_ids = solution_model_instance.generate( **model_inputs, max_new_tokens=10024 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Update solution in Parquet update_solution_pqt(row["uuid"], solution, solution_model_name.split("/")[-1]) except Exception as e: print(f"Error generating solution for problem {row['uuid']}: {e}") pbar.update(1) return "Solutions generated successfully!" def generate_solutions(solution_model_name): conn = duckdb.connect(database=DB_FILE) problems = conn.execute("SELECT uuid, problem FROM problems WHERE solution IS NULL").fetchall() if not problems: return "No unsolved problems found in the database." # Prepare a descriptive header for TQDM model_name = solution_model_name.split("/")[-1] total_problems = len(problems) tqdm_desc = f"Solution Model: {model_name} | Total Problems: {total_problems}" with tqdm(total=total_problems, desc=tqdm_desc, unit="solution") as pbar: for problem_id, problem_text in problems: try: solution_prompt = RESPONSE_SOLUTION_LLM_USR_PROMPT.format(problem=problem_text) messages = [ {"role": "system", "content": RESPONSE_SOLUTION_LLM_SYS_PROMPT}, {"role": "user", "content": solution_prompt} ] text = solution_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = solution_tokenizer([text], return_tensors="pt").to(solution_model_instance.device) generated_ids = solution_model_instance.generate( **model_inputs, max_new_tokens=10024 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] solution = solution_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Update the database with the generated solution conn.execute(""" UPDATE problems SET solution = ?, solution_model_name = ? WHERE uuid = ? """, (solution, model_name, problem_id)) # Update progress bar with the last processed problem ID pbar.set_postfix_str(f"Last Problem UUID: {problem_id}") except Exception as e: print(f"Error generating solution for problem {problem_id}: {e}") pbar.update(1) conn.close() return "Solutions generated successfully!" # Load problems from DuckDB def load_problems_from_duckdb(): """Load all problems and solutions from the DuckDB database.""" conn = duckdb.connect(database=DB_FILE) df = conn.execute("SELECT * FROM problems").df() conn.close() return df # Load summary from DuckDB def load_summary_from_duckdb(): conn = duckdb.connect(database=DB_FILE) # Total number of problems total_problems = conn.execute("SELECT COUNT(*) FROM problems").fetchone()[0] # Count of distinct domains distinct_domains_count = conn.execute("SELECT COUNT(DISTINCT main_domain) FROM problems").fetchone()[0] # Problems by model problems_by_model = conn.execute("SELECT model_name, COUNT(*) as count FROM problems GROUP BY model_name").fetchall() conn.close() # Build the summary summary = f"

Total Problems: {total_problems}

" summary += f"

Distinct Domains: {distinct_domains_count}

" summary += "

Problems by Model:

" return summary