File size: 5,629 Bytes
f3e6dfe 1b9b8b6 f3e6dfe bfae658 f3e6dfe 1b9b8b6 f3e6dfe ac48997 1b9b8b6 ac48997 c70e5b6 1b9b8b6 f3e6dfe 1b9b8b6 f3e6dfe 1b9b8b6 c70e5b6 1b9b8b6 f3e6dfe 254099a ac48997 1622188 1b9b8b6 c70e5b6 1b9b8b6 c70e5b6 f3e6dfe 1b9b8b6 1622188 ec9d966 1b9b8b6 ec9d966 1b9b8b6 ec9d966 1b9b8b6 c70e5b6 1b9b8b6 ec9d966 c70e5b6 1b9b8b6 1622188 bfae658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import uuid
import pandas as pd
import streamlit as st
import huggingface_hub as hh
from datetime import datetime
# read files from HF
OWNER = "Booking-com"
MAX_SUBMISSIONS = 20
REPO_ID = f"{OWNER}/streamlit-review-ranking-leaderboard"
RESULTS_REPO = f"{OWNER}/results"
GT_REPO = f"{OWNER}/accommodation-reviews-gt"
GROUPS_INFO_REPO = f"{OWNER}/rectour2024-groups"
TOKEN = os.environ.get("HF_TOKEN")
CACHE_PATH = os.getenv("HF_HOME", ".")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
TEMP_RESULTS_PATH = os.path.join(CACHE_PATH, "temp-results")
GT_PATH = os.path.join(CACHE_PATH, "gt")
GROUPS_INFO_PATH = os.path.join(CACHE_PATH, "groups-info")
REQUIRED_COLUMNS = ['accommodation_id', 'user_id'] + [f'review_{i}' for i in range(1, 11)]
API = hh.HfApi(token=TOKEN)
def restart_space():
API.restart_space(repo_id=REPO_ID)
# download the GT - shouldn't update too frequent
hh.snapshot_download(
repo_id=GT_REPO, local_dir=GT_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
def refresh_data():
hh.snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
hh.snapshot_download(
repo_id=GROUPS_INFO_REPO, local_dir=GROUPS_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
refresh_data()
def calculate_metrics(df_pred):
df_gt = pd.read_csv(os.path.join(GT_PATH, 'val_matches.csv'))
mrr10 = 0.3
precision10 = 0.2
return mrr10, precision10
def get_group_name_by_email(email):
df = pd.read_csv(GROUPS_INFO_PATH, 'groups_data.csv')
df_email = df[df['email'] == email].reset_index(drop=True)
if len(df_email) > 0:
return df_email.iloc[0]['group_name']
else:
raise Exception("E-mail is not valid")
def validate_pred_file(df_pred):
for col in REQUIRED_COLUMNS:
if col not in df_pred.columns:
raise Exception(f"Column {col} not in prediction file")
def get_revision(df_results, email):
df_group_data = df_results[df_results['email'] == email]
if len(df_group_data) > 0:
return df_group_data['revision'].max()
else:
return 0
def get_results_dataframe():
dfs = []
for f in os.listdir(EVAL_RESULTS_PATH):
if f.endswith('.csv'):
dfs.append(pd.read_csv(os.path.join(EVAL_RESULTS_PATH, f)))
return pd.concat(dfs)
def upload_results(group_email, group_name, model_name, revision, mrr10, precision10):
submission_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if not os.path.exists(TEMP_RESULTS_PATH):
os.mkdir(TEMP_RESULTS_PATH)
df_temp_results = pd.DataFrame({'email': [group_email], 'group_name': [group_name], model_name: [model_name],
"submission_date": [submission_date], "revision": [revision], "MRR10": [mrr10],
"PRECISION10": [precision10]})
temp_path = os.path.join(TEMP_RESULTS_PATH, str(uuid.uuid4()) + '.csv')
df_temp_results.to_csv(temp_path, index=False)
hh.upload_file(path_or_fileobj=temp_path, repo_id=RESULTS_REPO, token=TOKEN, repo_type="dataset")
def render():
st.set_page_config(page_title="RecTour2024 - Booking.com Review Ranking Challenge Leaderboard", layout="wide")
st.title("π RecTour2024 Leaderboard")
leaderboard_tab, submission_tab = st.tabs(["Leaderboard", "Submission"])
# leaderboard area
if leaderboard_tab.button("Refresh"):
refresh_data()
df_results = get_results_dataframe()
leaderboard_tab.dataframe(df_results.drop(columns=['email']))
# submission area
group_email = submission_tab.text_input(label="Group email", value="")
model_name = submission_tab.text_input(label="Model name", value="")
pred_file = submission_tab.file_uploader(label="Upload your prediction file",
help="Upload a csv.zip file, in pandas this can be achieved "
"with df.to_csv(<file_path>, compression='zip')",)
if submission_tab.button("Upload"):
if not pred_file:
submission_tab.markdown("no file was submitted!")
else:
try:
group_name = get_group_name_by_email(group_email)
df_pred = pd.read_csv(pred_file, compression='zip')
validate_pred_file(df_pred)
mrr10, precision10 = calculate_metrics(df_pred)
revision = get_revision(df_results=df_results, email=group_email) + 1 # generate next revision id
upload_results(group_email=group_email, group_name=group_name, model_name=model_name, revision=revision,
mrr10=mrr10, precision10=precision10)
submission_tab.markdown("## THANK YOU FOR YOUR SUBMISSION!")
submission_tab.markdown("Here are your submission details:")
submission_tab.markdown("**Group name:** " + group_name)
submission_tab.markdown("**Model name:** " + model_name)
submission_tab.markdown("**Revision:** " + revision + "(out of {MAX_SUBMISSIONS} allowed submissions)")
submission_tab.write("### Submission results")
submission_tab.markdown("**MRR@10:** {:.4f}".format(mrr10))
submission_tab.markdown("**Precision@10:** {:.4f}".format(precision10))
except Exception as e:
submission_tab.markdown(e)
if __name__ == "__main__":
render()
|